Skip to main content

Abstract

Epidemics of Botrytis-incited grey mould are common in open fields, orchards and greenhouses. These infections are promoted by high humidity and the presence of a film of water on susceptible plant organs and those conditions may be manipulated to prevent infection. Traditionally, heating greenhouses was a popular means of controlling the humidity in those structures and this practice remains popular in some temperate regions. However, the cost of active heating has forced farmers in some regions to abandon this disease-management strategy, which has led to the increased incidence and severity of grey mould, as susceptible organs of the crop plants remain wet for longer periods of time. Cultural methods for controlling Botrytis-incited disease include reducing the planting density, managing the crop canopy to allow for the aeration of the crop or susceptible organs via passive and active ventilation, fertigation with increased levels of potassium and calcium and reduced amounts of nitrogen, the use of soil mulch and passive solar heating of unheated greenhouses, avoiding harvesting on rainy days, and timing fungicide applications for the optimal protection of fresh harvest wounds and so that the crop remains wet for shorter periods of time. Row and field positioning and direction can affect grey mould as these factors affect local air movement and temporal temperature changes. A combination of treatments can provide better grey mould suppression than individual treatments and appropriate integration of control measures can provide sufficient disease control with minimal use of chemical fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abia JA, Smith BN (1980) Mineral nutritional status of pumpkin and infection by Sclerotinia sclerotiorum. Plant Physiol 65:106

    Google Scholar 

  • Aharoni N, Kenigsbuch D, Chalupowicz D et al (2010) Reducing chilling injury and decay in stored sweet basil. Israel J Plant Sci 58:167–180

    Article  Google Scholar 

  • Baas R, Van Oers S, Silber A et al (2003) Calcium distribution in cut roses as related to transpiration. J Hortic Sci Biotechnol 78:1–9

    Article  CAS  Google Scholar 

  • Bailey KL, Gossen BD, Derksen DA, Watson PR (2000) Impact of agronomic practices and environment on diseases of wheat and lentil in south-eastern Saskatchewan. Can J Plant Sci 80:917–927

    Article  Google Scholar 

  • Baptista FJ, Bailey BJ, Meneses JF (2012) Effect of nocturnal ventilation on the occurrence of Botrytis cinerea in Mediterranean unheated tomato greenhouses. Crop Prot 32:144–149

    Article  Google Scholar 

  • Bar-Tal A, Baas R, Ganmore-Neumann R et al (2001) Rose flower production and quality as affected by Ca concentration in the petal. Agronomie 21:393–402

    Article  Google Scholar 

  • Bayaa B, Erskine W (1998) Diseases of lentils. In: Allen DJ, Lenné JM (eds) The pathology of food and pasture legumes. CAB International, Wallingford, pp 423–471

    Google Scholar 

  • Ben Kalifa H, Rav David D, Borenshtein M et al (2012) Climate change effect on plant–pathogen–beneficial microorganism interaction in high humidity-promoted tomato diseases. IOBC/WPRS Bull 78:15–18

    Google Scholar 

  • Biddle AJ (2001) Botrytis gray mold. In: Kraft JM, Pfleger FL (eds) Compendium of pea diseases and pests, 2nd edn. American Phytopathological Society Press, St. Paul, pp 31–32

    Google Scholar 

  • Biggs AR, El-Kholi MM, El-Neshawy S, Nickerson R (1997) Effects of calcium salts on growth, polygalacturonase activity, and infection of peach fruit by Monilinia fructicola. Plant Dis 81:399–403

    Article  CAS  Google Scholar 

  • Bretag TW, Mebalds MI (1987) Pathogenicity of fungi isolated from Cicer arietinum (chickpea) grown in north-western Victoria. Aust J Exp Agric 27:141–148

    Article  Google Scholar 

  • Cargnello G, Forno S, Terzuolo S (1991) Research on the influence of agricultural techniques on epidemic patterns: investigations of grape training systems. Vignevini 18:53–57

    Google Scholar 

  • Chardonnet C, Doneche B (1995) Relation between calcium content and resistance to enzymatic digestion of the skin during grape ripening. Vitis 34:95–98

    Google Scholar 

  • Chardonnet CO, Sams CE, Trigiano RN, Conway WS (2000) Variability of three isolates of Botrytis cinerea affects the inhibitory effects of calcium on this fungus. Phytopathology 90:769–774

    Article  CAS  PubMed  Google Scholar 

  • Cheour F, Willemot C, Arul J et al (1990) Foliar application of calcium chloride delays postharvest ripening of strawberry. J Am Soc Hortic Sci 115:789–792

    CAS  Google Scholar 

  • Cline JA, Sekse L, Meland M, Webster AD (1995) Rain-induced fruit cracking of sweet cherries: I. Influence of cultivar and rootstock on fruit water absorption, cracking and quality. Acta Agric 45:213–223

    Google Scholar 

  • Cohen S, Ziv G, Grava A et al (2006) Influence of polyethylene mulch on night microclimate, dew point and Phytophthora infestans infection in non-heated tomato greenhouses in southern Israel. Acta Horticult 718:277–282

    Article  Google Scholar 

  • Conway WS (1982) Effect of postharvest calcium treatment on decay of delicious apples. Plant Dis 66:402–403

    Article  CAS  Google Scholar 

  • Conway WS, Sams CE, Abbott JA, Bruton BD (1991) Postharvest calcium treatment of apple fruit to provide broad-spectrum protection against postharvest pathogens. Plant Dis 75:620–622

    Article  CAS  Google Scholar 

  • Daugaard H (2003) Effect of plant spacing on yield and incidence of Botrytis cinerea Pers. in strawberry. IOBC/WPRS Bull 26(2):147–151

    Google Scholar 

  • Davidson JA, Pande S, Bretag TW et al (2004) Biology and management of Botrytis spp. in legume crops. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 295–318

    Google Scholar 

  • Decognet V, Bardin M, Trottin-Caudal Y, Nicot PC (2009) Rapid change in the genetic diversity of Botrytis cinerea populations after the introduction of strains in a tomato glasshouse. Phytopathology 99:185–193

    Article  CAS  PubMed  Google Scholar 

  • Dik AJ, Wubben JP (2004) Epidemiology of Botrytis cinerea diseases in greenhouses. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 319–333

    Google Scholar 

  • Droby S, Lichter A (2004) Post-harvest Botrytis infections: etiology, development and management. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 349–367

    Google Scholar 

  • Eden MA, Hill RA, Beresford R, Stewart A (1996) The influence of inoculum concentration, relative humidity, and temperature on infection of greenhouse tomatoes by Botrytis cinerea. Plant Pathol 45:795–806

    Article  Google Scholar 

  • Eibach R (1994) Defense mechanisms of the grapevine to fungus disease. Am Vineyard 1:8–10

    Google Scholar 

  • Elad Y (1997) Effect of filtration of solar light on the production of conidia by field isolates of Botrytis cinerea and on several diseases of greenhouse-grown vegetables. Crop Prot 16:635–642

    Article  Google Scholar 

  • Elad Y (2000) Changes in disease epidemics on greenhouse grown crops. Acta Horticult 534:213–220

    Article  Google Scholar 

  • Elad Y, Evensen K (1995) Physiological aspects of resistance to Botrytis cinerea. Phytopathology 85:637–643

    Google Scholar 

  • Elad Y, Shtienberg D (1995) Botrytis cinerea in greenhouse vegetables: chemical, cultural, physiological and biological controls and their integration. Integr Pest Manag Rev 1:15–29

    Article  Google Scholar 

  • Elad Y, Williamson B, Tudzynski P, Delen N (2004) Botrytis spp. and diseases they cause in agricultural systems – an introduction. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 1–8

    Google Scholar 

  • Elad Y, Jacob D, Rav David D et al (2008) Development of climate control methods for integrated management of powdery mildew of tomato caused by Oidium neolycopersici. Acta Horticult 807:727–732

    Google Scholar 

  • Elad Y, Brand M, Messika Y et al (2009a) Spray treatments combined with climate modification for the management of Leveillula taurica in sweet pepper. Eur J Plant Pathol 124:309–329

    Article  Google Scholar 

  • Elad Y, Shpialter L, Rav David D et al (2009b) Suppression of gray mold in lisianthus by passive means of greenhouse environment management. Acta Horticult 893:1277–1283

    Google Scholar 

  • Elad Y, Fogel M, Rav David D et al (2014a) Daytime solar heat treatment for the suppression of foliar plant pathogens in polyethylene-covered greenhouses. Acta Horticult 1015:89–94, http://www.actahort.org/books/1015/1015_9.htm

  • Elad Y, Israeli L, Fogel M et al (2014b) Conditions influencing the development of sweet basil grey mould and cultural measures for disease management. Crop Prot 64:67–77

    Article  Google Scholar 

  • Elmer PAG, Michailides TJ (2004) Epidemiology of Botrytis cinerea in orchards and vine crops. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 243–272

    Google Scholar 

  • Engelhard W (1989) Soilborne plant pathogens: management of diseases with macro- and microelements. American Phytopathological Society Press, St. Paul

    Google Scholar 

  • English JT, Thomas CS, Marois JJ, Gubler WD (1989) Microclimates of grapevine canopies associated with leaf removal and control of botrytis bunch rot. Phytopathology 79:395–401

    Article  Google Scholar 

  • English JT, Kaps ML, Moore JF et al (1993) Leaf removal for control of Botrytis bunch rot of wine grapes in the midwestern United States. Plant Dis 77:1224–1227

    Article  Google Scholar 

  • Erincik O, Madden LV, Scheerens JC, Ellis MA (1998) Evaluation of foliar applications of calcium chloride for control of Botrytis fruit rot on strawberry and effects on strawberry fruit quality. Adv Strawberry Res 17:7–17

    Google Scholar 

  • Ferguson IB (1984) Calcium in plant senescence and fruit ripening. Plant Cell Environ 7:477–489

    Article  CAS  Google Scholar 

  • Fermaud M, Liminana JM, Froidefond G, Pieri P (2001a) Grape cluster microclimate and architecture affect severity of Botrytis rot of ripening berries. IOBC WPRS Bull 24(7):7–9

    Google Scholar 

  • Fermaud M, Pieri P, Liminana JM (2001b) Botrytis and micro-climates: propagation of Botrytis cinerea in grapes in controlled climatic conditions. Phytoma 543:40–43

    Google Scholar 

  • Flores Velasquez J, Ibarra JL (1998) Cultivation of peppers using plastic mulch with coloured films and nutrient irrigation. Plasticulture 116:16–26

    Google Scholar 

  • Gubler WD, Marois JJ, Bledsoe AM, Bettiga LJ (1987) Control of Botrytis bunch rot of grape with canopy management. Plant Dis 71:599–601

    Article  Google Scholar 

  • Hanounik SB, Robertson LD (1988) New sources of resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Dis 72:696–698

    Article  Google Scholar 

  • Hausbeck MK, Pennypacker SP, Stevenson RE (1996) The use of forced heated air to manage Botrytis stem blight of geranium stock plants in a commercial greenhouse. Plant Dis 80:940–943

    Article  Google Scholar 

  • Hegab MT, Beshir MA (1994) Effect of nitrogen and fertilizer and application of fungicides on chocolate spot, rust diseases and yield components of field bean under calcareous soil. Ann Agric Sci 32:717–729

    Google Scholar 

  • Hobbs EL, Waters WE (1964) Influence of nitrogen and potassium on susceptibility of Chrysanthemum morifolium to Botrytis cinerea. Phytopathology 54:674–676

    CAS  Google Scholar 

  • Hoffland E, Van Beusichem ML, Jeger MJ (1999) Nitrogen availability and susceptibility of tomato leaves to Botrytis cinerea. Plant Soil 210:263–272

    Article  CAS  Google Scholar 

  • Holz G, Coertze S, Williamson B (2004) The ecology of Botrytis on plant surfaces. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 9–27

    Google Scholar 

  • Honda Y, Toki T, Yunoki T (1977) Control of gray mold of greenhouse cucumber and tomato by inhibiting sporulation. Plant Dis Rep 61:1041–1048

    Google Scholar 

  • Israeli L, Yermiyahu U, Rav-David D et al (2011) The influence of nutritional elements on sweet basil diseases incited by Sclerotinia sclerotiorum and Botrytis cinerea. Phytoparasitica 39:245

    Google Scholar 

  • Jacob D, Rav David D, Elad Y (2007) Biology and biological control of tomato powdery mildew (Oidium neolycopersici). IOBC/WPRS Bull 30(6–1):329–332

    Google Scholar 

  • Jarvis WR (1991) Gray mold. In: Hall R (ed) Compendium of bean diseases. American Phytopathological Society Press, St. Paul, pp 21–22

    Google Scholar 

  • Jarvis WR (1992) Managing diseases in greenhouse crops. The American Phytopathological Society Press, St. Paul

    Google Scholar 

  • Jellis GJ, Bond DA, Boulton RE (1998) Diseases of faba bean. In: Allen DJ, Lenné JM (eds) The pathology of food and pasture legumes. CAB International, Wallingford, pp 371–422

    Google Scholar 

  • Jermini M, Jelmini G, Gessler C (1986) Control of Botrytis cinerea on Merlot grapevine in Ticino. Role of latent infections. Rev Suisse Vitic Arboric Hortic 18:161–166

    Google Scholar 

  • Karp K, Starast M (2002) Effects of springtime foliar fertilization on strawberry yield in Estonia. Acta Horticult 594:501–505

    Article  Google Scholar 

  • Kiraly Z (1964) Effect of nitrogen fertilization on phenol metabolism of selected plants species and its ecological implications. Bot Acta 105:355–361

    Google Scholar 

  • Köhl J, Molhoek WML, Van der Plas CH et al (1992) Biological control of botrytis leaf blight of onions: significance of sporulation suppression. In: Verhoeff K, Malathrakis NE, Williamson B (eds) Recent advances in Botrytis research. Pudoc Scientific Publishers, Wageningen, pp 192–196

    Google Scholar 

  • Korolev N, Katan T, Elad Y (2006) The use of selenate-resistant strains as markers for the spread and survival of Botrytis cinerea under greenhouse conditions. Phytopathology 96:1195–1203

    Article  CAS  PubMed  Google Scholar 

  • Laugale V, Lepse L, Strautina S et al (2012) Effect of planting density and plastic soil mulch on strawberry plant development, yield and fruit quality. Acta Horticult 926:517–523

    Article  Google Scholar 

  • Legard DE, Xiao CL, Mertely JC, Chandler CK (2000) Effects of plant spacing and cultivar on incidence of botrytis fruit rot in annual strawberry. Plant Dis 84:531–538

    Article  Google Scholar 

  • Mansfield JW (1980) Mechanism of disease resistance in Botrytis. In: Coley-Smith JR, Verhoeff K, Jarvis WR (eds) The biology of Botrytis. Academic, London, pp 181–218

    Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic, London, pp 229–448

    Google Scholar 

  • Martin SR (1990) Systematic management to minimize botrytis bunch rot in three Victorian vineyards. Aust NZ Wine Ind J 5:235–237

    Google Scholar 

  • Miceli A, Ippolito A, Linsalata V, Nigro F (1999) Effect of preharvest calcium treatments on decay and biochemical changes in table grape during storage. Phytopathol Mediterr 38:47–53

    CAS  Google Scholar 

  • Michailides TJ, Elmer PAG (2000) Botrytis gray mold of kiwifruit caused by Botrytis cinerea in the United States and New Zealand. Plant Dis 84:208–223

    Article  Google Scholar 

  • Mills DJ, Coffman CB, Teasdale JR et al (2002) Factors associated with foliar disease of staked fresh market tomatoes grown under differing bed strategies. Plant Dis 86:356–361

    Article  Google Scholar 

  • Mlikota Gabler F, Smilanick JL, Mansour M et al (2003) Correlations of morphological, anatomical, and chemical features of grape berries with resistance to Botrytis cinerea. Phytopathology 93:1263–1273

    Article  Google Scholar 

  • Morgan WM (1984) The effect of night temperature and glasshouse ventilation on the incidence of Botrytis cinerea in a late-planted tomato crop. Crop Prot 3:243–251

    Article  Google Scholar 

  • Nicot PC, Mermier M, Vaissière BE, Lagier J (1996) Differential spore production by Botrytis cinerea on agar medium and plant tissue under near-ultraviolet light-absorbing polyethylene film. Plant Dis 80:555–558

    Article  Google Scholar 

  • O’Neill TM, Shtienberg D, Elad Y (1997) Effect of some host and microclimate factors on infection of tomato stems by Botrytis cinerea. Plant Dis 81:36–40

    Article  Google Scholar 

  • Percival DC, Sullivan JA, Fisher KH (1993) Effect of cluster exposure, berry contact and cultivar on cuticular membrane formation and occurrence of bunch rot (Botrytis cinerea Pers.: Fr.) with 3 Vitis vinifera L. cultivars. Vitis 32:87–97

    Google Scholar 

  • Percival DC, Fisher KH, Sullivan JA (1994) Use of fruit zone leaf removal with Vitis vinifera L. cv. Riesling grapevines. II. Effect on fruit composition, yield, and occurrence of bunch rot (Botrytis cinerea Pers.:Fr.). Am J Enol Viticult 45:133–140

    Google Scholar 

  • Pertot I, Perin L (1999) Influence of N-fertilization on rot caused by Botrytis cinerea on kiwifruit in cold store. Notiziario dall’Ente Regionale per lo Sviluppo e la Promozione dell’Agricoltura del Friuli Venezia Giulia (ERSA) 12(6):39–41

    Google Scholar 

  • Prasad M, Speirs TM (1991) The effect of nutrition on the storage quality of kiwifruit (A review). Acta Horticult 297:579–585

    Google Scholar 

  • Redl H (1988) Results of a ten-year study on the suitability of one-wire training for wide-spaced, high-stemmed grapevine plantations. Vitis 27:33–40

    Google Scholar 

  • Reuveni R, Raviv M (1992) The effect of spectrally modified polyethylene films on the development of Botrytis cinerea in greenhouse grown tomato plants. Biol Agric Hortic 9:77–86

    Article  Google Scholar 

  • Reuveni R, Raviv M, Bar R (1989) Sporulation of Botrytis cinerea as affected by photoselective sheets and filters. Ann Appl Biol 115:417–424

    Article  Google Scholar 

  • Ribéreau-Gayon J, Ribéreau-Gayon P, Seguin G (1980) Botrytis cinerea in enology. In: Coley-Smith JR, Verhoeff K, Jarvis WR (eds) The biology of Botrytis. Academic, London, pp 251–274

    Google Scholar 

  • Saks Y, Copel A, Barkai Golan R (1996) Improvement of harvested strawberry quality by illumination: colour and Botrytis infection. Postharvest Biol Technol 8:19–27

    Article  Google Scholar 

  • Savage SD, Sall MA (1982) Vineyard cultural practices may help reduce Botrytis bunch rot caused by Botrytis cinerea. Calif Agric 36(2&3):8–9

    Google Scholar 

  • Schwab M, Noga G, Barthlott W (1993) Influence of water and nutrient deficiency on epicuticular waxes of kohlrabi. Angew Bot 67:186–191

    CAS  Google Scholar 

  • Sharabani G, Shtienberg D, Elad Y, Dinoor A (1999) Epidemiology of Botrytis cinerea in sweet basil and implications for disease management. Plant Dis 83:554–560

    Article  Google Scholar 

  • Shpialter L, Rav David D, Dori I et al (2009) Cultural methods and environmental conditions affecting gray mold and its management in lisianthus. Phytopathology 99:557–570

    Article  PubMed  Google Scholar 

  • Shtienberg D, Elad Y (1997) Incorporation of weather forecasting in integrated, biological-chemical management of Botrytis cinerea. Phytopathology 87:332–340

    Article  CAS  PubMed  Google Scholar 

  • Shtienberg D, Elad Y, Niv A et al (1998) Significance of leaf infection by Botrytis cinerea in stem rotting of tomatoes grown in non-heated greenhouses. Eur J Plant Pathol 104:753–763

    Article  Google Scholar 

  • Shtienberg D, Elad Y, Borenshtein M et al (2010) Polyethylene mulch modulates greenhouse microclimate and reduces infection of Phytophthora infestans in tomato and Pseudoperonospora cubensis in cucumber. Phytopathology 100:97–104

    Article  CAS  PubMed  Google Scholar 

  • Sirjusingh C, Sutton JC (1996) Effects of wetness duration and temperature on infection of geranium by Botrytis cinerea. Plant Dis 80:160–165

    Article  Google Scholar 

  • Smithyman RP, Howell GS, Miller DP (1997) Influence of canopy configuration on vegetative development, yield, and fruit composition of Seyvalblanc grapevines. Am J Enol Viticult 48:482–491

    Google Scholar 

  • Suelter CH (1970) Enzymes activated by monovalent cations. Science 168:789–795

    Article  CAS  PubMed  Google Scholar 

  • Sundheim L (1973) Botrytis fabae, B. cinerea and Ascochyta fabae on broad bean (Vicia faba) in Norway. Acta Agric Scand 23:43–51

    Article  Google Scholar 

  • Thomas CS, Marois JJ, English JT (1988) The effects of wind speed, temperature, and relative humidity on development of aerial mycelium and conidia of Botrytis cinerea on grape. Phytopathology 78:260–265

    Article  Google Scholar 

  • Trolinger JC, Strider DL (1984) Botrytis blight of Exacum affine and its control. Phytopathology 74:1181–1188

    Article  CAS  Google Scholar 

  • Vail ME, Marois JJ (1991) Grape cluster architecture and the susceptibility of berries to Botrytis cinerea. Phytopathology 81:188–191

    Article  Google Scholar 

  • Verhoeff K (1968) Studies on Botrytis cinerea in tomatoes. Effect of soil nitrogen level and of methods of deleafing upon occurrence of B. cinerea under commercial conditions. Neth J Plant Pathol 74:184–192

    Article  Google Scholar 

  • Volpin H, Elad Y (1991) Influence of calcium nutrition on susceptibility of rose flowers to Botrytis blight. Phytopathology 81:1390–1394

    Article  CAS  Google Scholar 

  • Wegulo SN, Vilchez M (2007) Evaluation of lisianthus cultivars for resistance to Botrytis cinerea. Plant Dis 91:997–1001

    Article  Google Scholar 

  • West JS, Pearson S, Hadley P et al (2000) Spectral filters for the control of Botrytis cinerea. Ann Appl Biol 136:115–120

    Article  Google Scholar 

  • Williamson B, Jennings DL (1992) Resistance to cane and foliar diseases in red raspberry (Rubus idaeus) and related species. Euphytica 63:59–70

    Article  Google Scholar 

  • Wojcik P, Lewandowski M (2003) Effect of calcium and boron sprays on yield and quality of “Elsanta” strawberry. J Plant Nutr 26:671–682

    Article  CAS  Google Scholar 

  • Xiao CL, Chandler CK, Price JF et al (2001) Comparison of epidemics of Botrytis fruit rot and powdery mildew of strawberry in large plastic tunnel and field production systems. Plant Dis 85:901–909

    Article  Google Scholar 

  • Yermiyahu U, Shamai I, Peleg R et al (2006) Reduction of Botrytis cinerea sporulation in sweet basil by altering the concentrations of nitrogen and calcium in the irrigation solution. Plant Pathol 55:544–552

    Article  CAS  Google Scholar 

  • Yermiyahu U, Israeli L, Fogel M, Elad Y (2013) Enhanced potassium status in sweet basil reduced diseases caused by Botrytis cinerea and Sclerotinia sclerotiorum. Proc Int Plant Nutr Colloq XVII:469–470

    Google Scholar 

  • Zoecklein BW, Wolf TK, Duncan NW et al (1992) Effects of fruit zone leaf removal on yield, fruit composition, and fruit rot incidence of Chardonnay and White Riesling (Vitis vinifera L.) grapes. Am J Enol Viticult 43:139–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yigal Elad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Elad, Y. (2016). Cultural and Integrated Control of Botrytis spp.. In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_8

Download citation

Publish with us

Policies and ethics