Skip to main content

Mean Field Games

  • Living reference work entry
  • First Online:
Handbook of Dynamic Game Theory

Abstract

Mean field game (MFG) theory studies the existence of Nash equilibria, together with the individual strategies which generate them, in games involving a large number of asymptotically negligible agents modeled by controlled stochastic dynamical systems. This is achieved by exploiting the relationship between the finite and corresponding infinite limit population problems. The solution to the infinite population problem is given by (i) the Hamilton-Jacobi-Bellman (HJB) equation of optimal control for a generic agent and (ii) the Fokker-Planck-Kolmogorov (FPK) equation for that agent, where these equations are linked by the probability distribution of the state of the generic agent, otherwise known as the system’s mean field. Moreover, (i) and (ii) have an equivalent expression in terms of the stochastic maximum principle together with a McKean-Vlasov stochastic differential equation, and yet a third characterization is in terms of the so-called master equation. The article first describes problem areas which motivate the development of MFG theory and then presents the theory’s basic mathematical formalization. The main results of MFG theory are then presented, namely the existence and uniqueness of infinite population Nash equilibiria, their approximating finite population ɛ-Nash equilibria, and the associated best response strategies. This is followed by a presentation of the three main mathematical methodologies for the derivation of the principal results of the theory. Next, the particular topics of major-minor agent MFG theory and the common noise problem are briefly described and then the final section concisely presents three application areas of MFG theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adlakha S, Johari R, Weintraub GY (2015) Equilibria of dynamic games with many players: existence, approximation, and market structure. J Econ Theory 156:269–316

    Article  MathSciNet  MATH  Google Scholar 

  • Ahuja S (2016) Wellposedness of mean gield games with common noise under a weak monotonicity condition. SIAM J Control Optim 54(1):30–48

    Article  MathSciNet  MATH  Google Scholar 

  • Altman E, Basar T, Srikant R (2002) Nash equilibria for combined flow control and routing in networks: asymptotic behavior for a large number of users. IEEE Trans Autom Control 47(6):917–930

    Article  MathSciNet  MATH  Google Scholar 

  • Amir R (1996) Continuous stochastic games of capital accumulation with convex transitions. Games Econ Behav 15:111–131

    Article  MathSciNet  MATH  Google Scholar 

  • Andersson D, Djehiche B (2011) A maximum principle for SDEs of mean-field type. Appl Math Optim 63(3):341–356

    Article  MathSciNet  MATH  Google Scholar 

  • Aumann RJ, Shapley LS (1974) Values of non-atomic games. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Aziz M, Caines PE (2017) A mean field game computational methodology for decentralized cellular network optimization. IEEE Trans Control Syst Technol 25(2):563–576

    Article  Google Scholar 

  • Bardi M (2012) Explicit solutions of some linear-quadratic mean field games. Netw Heterog Media 7(2):243–261

    Article  MathSciNet  MATH  Google Scholar 

  • Basar T, Ho YC (1974) Informational properties of the Nash solutions of two stochastic nonzero-sum games. J Econ Theory 7:370–387

    Article  MathSciNet  Google Scholar 

  • Basar T, Olsder GJ (1999) Dynamic noncooperative game theory. SIAM, Philadelphia

    MATH  Google Scholar 

  • Bauch CT, Earn DJD (2004) Vaccination and the theory of games. Proc Natl Acad Sci U.S.A. 101:13391–13394

    Article  MathSciNet  MATH  Google Scholar 

  • Bauso D, Pesenti R, Tolotti M (2016) Opinion dynamics and stubbornness via multi-population mean-field games. J Optim Theory Appl 170(1):266–293

    Article  MathSciNet  MATH  Google Scholar 

  • Bensoussan A, Frehse J (1984) Nonlinear elliptic systems in stochastic game theory. J Reine Angew Math 350:23–67

    MathSciNet  MATH  Google Scholar 

  • Bensoussan A, Frehse J, Yam P (2013) Mean field games and mean field type control theory. Springer, New York

    Book  MATH  Google Scholar 

  • Bensoussan A, Frehse J, and Yam SCP (2015) The master equation in mean field theory. J Math Pures Appl 103:1441–1474

    Article  MathSciNet  MATH  Google Scholar 

  • Bergin J, Bernhardt D (1992) Anonymous sequential games with aggregate uncertainty. J Math Econ 21:543–562

    Article  MathSciNet  MATH  Google Scholar 

  • Caines PE (2014) Mean field games. In: Samad T, Baillieul J (eds) Encyclopedia of systems and control. Springer, Berlin

    Google Scholar 

  • Caines PE, Kizilkale AC (2017, in press) ɛ-Nash equilibria for partially observed LQG mean field games with a major player. IEEE Trans Autom Control

    Google Scholar 

  • Cardaliaguet P (2012) Notes on mean field games. University of Paris, Dauphine

    Google Scholar 

  • Cardaliaguet P, Delarue F, Lasry J-M, Lions P-L (2015, preprint) The master equation and the convergence problem in mean field games

    Google Scholar 

  • Carmona R, Delarue F (2013) Probabilistic analysis of mean-field games. SIAM J Control Optim 51(4):2705–2734

    Article  MathSciNet  MATH  Google Scholar 

  • Carmona R, Delarue F (2014) The master equation for large population equilibriums. In: Crisan D., Hambly B., Zariphopoulou T (eds) Stochastic analysis and applications. Springer proceedings in mathematics & statistics, vol 100. Springer, Cham

    Google Scholar 

  • Carmona R, Delarue F, Lachapelle A (2013) Control of McKean-Vlasov dynamics versus mean field games. Math Fin Econ 7(2):131–166

    Article  MathSciNet  MATH  Google Scholar 

  • Carmona R, Fouque J-P, Sun L-H (2015) Mean field games and systemic risk. Commun Math Sci 13(4):911–933

    Article  MathSciNet  MATH  Google Scholar 

  • Carmona R, Lacker D (2015) A probabilistic weak formulation of mean field games and applications. Ann Appl Probab 25:1189–1231

    Article  MathSciNet  MATH  Google Scholar 

  • Carmona R, Zhu X (2016) A probabilistic approach to mean field games with major and minor players. Ann Appl Probab 26(3):1535–1580

    Article  MathSciNet  MATH  Google Scholar 

  • Chan P, Sircar R (2015) Bertrand and Cournot mean field games. Appl Math Optim 71:533–569

    Article  MathSciNet  MATH  Google Scholar 

  • Correa JR, Stier-Moses NE (2010) Wardrop equilibria. In: Cochran JJ (ed) Wiley encyclopedia of operations research and management science. John Wiley & Sons, Inc, Hoboken

    Google Scholar 

  • Djehiche B, Huang M (2016) A characterization of sub-game perfect equilibria for SDEs of mean field type. Dyn Games Appl 6(1):55–81

    Article  MathSciNet  MATH  Google Scholar 

  • Dogbé C (2010) Modeling crowd dynamics by the mean-field limit approach. Math Comput Model 52(9–10):1506–1520

    Article  MathSciNet  MATH  Google Scholar 

  • Fischer M (2014, preprint) On the connection between symmetric N-player games and mean field games. arXiv:1405.1345v1

    Google Scholar 

  • Gangbo W, Swiech A (2015) Existence of a solution to an equation arising from mean field games. J Differ Equ 259(11):6573–6643

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes DA, Mohr J, Souza RR (2013) Continuous time finite state mean field games. Appl Math Optim 68(1):99–143

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes DA, Saude J (2014) Mean field games models – a brief survey. Dyn Games Appl 4(2):110–154

    Article  MathSciNet  MATH  Google Scholar 

  • Gomes D, Velho RM, Wolfram M-T (2014) Socio-economic applications of finite state mean field games. Phil Trans R Soc A 372:20130405 http://dx.doi.org/10.1098/rsta.2013.0405

    Article  MathSciNet  MATH  Google Scholar 

  • Guéant O, Lasry J-M, Lions P-L (2011) Mean field games and applications. In: Paris-Princeton lectures on mathematical finance. Springer, Heidelberg, pp 205–266

    Google Scholar 

  • Haimanko O (2000) Nonsymmetric values of nonatomic and mixed games. Math Oper Res 25:591–605

    Article  MathSciNet  MATH  Google Scholar 

  • Hart S (1973) Values of mixed games. Int J Game Theory 2(1):69–85

    Article  MathSciNet  MATH  Google Scholar 

  • Haurie A, Marcotte P (1985) On the relationship between Nash-Cournot and Wardrop equilibria. Networks 15(3):295–308

    Article  MathSciNet  MATH  Google Scholar 

  • Ho YC (1980) Team decision theory and information structures. Proc IEEE 68(6):15–22

    Google Scholar 

  • Huang M (2010) Large-population LQG games involving a major player: the Nash certainty equivalence principle. SIAM J Control Optim 48:3318–3353

    Article  MathSciNet  MATH  Google Scholar 

  • Huang M, Caines PE, Malhamé RP (2003) Individual and mass behaviour in large population stochastic wireless power control problems: centralized and Nash equilibrium solutions. In: Proceedings of the 42nd IEEE CDC, Maui, pp 98–103

    Google Scholar 

  • Huang M, Caines PE, Malhamé RP (2007) Large-population cost-coupled LQG problems with non-uniform agents: individual-mass behavior and decentralized ɛ-Nash equilibria. IEEE Trans Autom Control 52:1560–1571

    Article  Google Scholar 

  • Huang M, Caines PE, Malhamé RP (2012) Social optima in mean field LQG control: centralized and decentralized strategies. IEEE Trans Autom Control 57(7):1736–1751

    Article  MathSciNet  Google Scholar 

  • Huang M, Malhamé RP, Caines PE (2006) Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun Inf Syst 6(3):221–251

    MathSciNet  MATH  Google Scholar 

  • Huang M, Nguyen SL (2016) Mean field games for stochastic growth with relative utility. Appl Math Optim 74:643–668

    Article  MathSciNet  MATH  Google Scholar 

  • Jovanovic B, Rosenthal RW (1988) Anonymous sequential games. J Math Econ 17(1):77–87

    Article  MathSciNet  MATH  Google Scholar 

  • Kizilkale AC, Malhamé RP (2016) Collective target tracking mean field control for Markovian jump-driven models of electric water heating loads. In: Vamvoudakis K, Sarangapani J (eds) Control of complex systems: theory and applications. Butterworth-Heinemann/Elsevier, Oxford, pp 559–589

    Chapter  Google Scholar 

  • Kolokoltsov VN, Bensoussan A (2016) Mean-field-game model for botnet defense in cyber-security. Appl Math Optim 74(3):669–692

    Article  MathSciNet  MATH  Google Scholar 

  • Kolokoltsov VN, Li J, Yang W (2012, preprint) Mean field games and nonlinear Markov processes. Arxiv.org/abs/1112.3744v2

    Google Scholar 

  • Kolokoltsov VN, Malafeyev OA (2017) Mean-field-game model of corruption. Dyn Games Appl 7(1):34–47. doi: 10.1007/s13235-015-0175-x

    Article  MathSciNet  MATH  Google Scholar 

  • Lachapelle A, Wolfram M-T (2011) On a mean field game approach modeling congestion and aversion in pedestrian crowds. Transp Res B 45(10):1572–1589

    Article  Google Scholar 

  • Laguzet L, Turinici G (2015) Individual vaccination as Nash equilibrium in a SIR model with application to the 2009–2010 influenza A (H1N1) epidemic in France. Bull Math Biol 77(10):1955–1984

    Article  MathSciNet  MATH  Google Scholar 

  • Lasry J-M, Lions P-L (2006a) Jeux à champ moyen. I – Le cas stationnaire. C Rendus Math 343(9):619–625

    Article  MathSciNet  MATH  Google Scholar 

  • Lasry J-M, Lions P-L (2006b) Jeux à champ moyen. II Horizon fini et controle optimal. C Rendus Math 343(10):679–684

    Article  MathSciNet  MATH  Google Scholar 

  • Lasry J-M, Lions P-L (2007). Mean field games. Japan J Math 2:229–260

    Article  MathSciNet  MATH  Google Scholar 

  • Li T, Zhang J-F (2008) Asymptotically optimal decentralized control for large population stochastic multiagent systems. IEEE Trans Automat Control 53:1643–1660

    Article  MathSciNet  Google Scholar 

  • Lucas Jr. RE, Moll B (2014) Knowledge growth and the allocation of time. J Political Econ 122(1):1–51

    Article  Google Scholar 

  • Ma Z, Callaway DS, Hiskens IA (2013) Decentralized charging control of large populations of plug-in electric vehicles. IEEE Trans Control Syst Technol 21(1):67–78

    Article  Google Scholar 

  • Milnor JW, Shapley LS (1978) Values of large games I​I: oceanic games. Math Oper Res 3:290–307

    Article  MathSciNet  MATH  Google Scholar 

  • Neyman A (2002) Values of games with infinitely many players. In: Aumann RJ, Hart S (eds) Handbook of game theory, vol 3. Elsevier, Amsterdam, pp 2121–2167

    Google Scholar 

  • Nourian M, Caines PE (2013) ɛ-Nash mean field game theory for nonlinear stochastic dynamical systems with major and minor agents. SIAM J Control Optim 51:3302–3331

    Article  MathSciNet  MATH  Google Scholar 

  • Salhab R, Malhamé RP, Le Ny L (2015, preprint) A dynamic game model of collective choice in multi-agent systems. ArXiv:1506.09210

    Google Scholar 

  • Sen N, Caines PE (2016) Mean field game theory with a partially observed major agent. SIAM J Control Optim 54:3174–3224

    Article  MathSciNet  MATH  Google Scholar 

  • Tembine H, Zhu Q, Basar T (2014) Risk-sensitive mean-field games. IEEE Trans Autom Control 59:835–850

    Article  MathSciNet  MATH  Google Scholar 

  • Wang BC, Zhang J-F (2012) Distributed control of multi-agent systems with random parameters and a major agent. Automatica 48(9):2093–2106

    Article  MathSciNet  MATH  Google Scholar 

  • Wardrop JG (1952) Some theoretical aspects of road traffic research. Proc Inst Civ Eng Part II, 1:325–378

    Google Scholar 

  • Weintraub GY, Benkard C, Van Roy B (2005) Oblivious equilibrium: a mean field approximation for large-scale dynamic games. Advances in neural information processing systems, MIT Press, Cambridge

    Google Scholar 

  • Weintraub GY, Benkard CL, Van Roy B (2008) Markov perfect industry dynamics with many firms. Econometrica 76(6):1375–1411

    Article  MathSciNet  MATH  Google Scholar 

  • Yin H, Mehta PG, Meyn SP, Shanbhag UV (2012) Synchronization of coupled oscillators is a game. IEEE Trans Autom Control 57:920–935

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Caines .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Caines, P.E., Huang, M., Malhamé, R.P. (2017). Mean Field Games. In: Basar, T., Zaccour, G. (eds) Handbook of Dynamic Game Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-27335-8_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27335-8_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27335-8

  • Online ISBN: 978-3-319-27335-8

  • eBook Packages: Springer Reference Religion and PhilosophyReference Module Humanities and Social SciencesReference Module Humanities

Publish with us

Policies and ethics