Skip to main content

Mechanisms of Drug Efflux and Strategies to Overcome Them as a Way to Control Microbial Growth

  • Chapter
  • First Online:
New Weapons to Control Bacterial Growth

Abstract

The discovery of antibacterials during the twentieth century has been one of the most important events in the history of medicine. The development, production, and use of these new drugs revolutionized clinical practice and industrial microbiology. Certainly, since the beginning of the antibiotic era many lives have been saved. Nevertheless, shortly after the first descriptions of the effects of antibiotics against pathogenic bacteria, the phenomenon of antimicrobial resistance began to be quoted by different researchers. At first, this was not considered a significant clinical event.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeschlimann JR, Dresser LD, Kaatz GW, Rybak MJ (1999) Effects of NorA inhibitors on in vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains of Staphylococcus aureus. Antimicrob Agents Chemother 43:335ā€“340

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bay DC, Turner RJ (2009) Diversity and evolution of the small multidrug resistance protein family. BMC Evol Biol 9:140

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Bay DC, Rommens KL, Turner RJ (2007) Small multidrug resistance proteins: a multidrug transporter family that continues to grow. Biochim Biophys Acta 1778(9):1814ā€“1838

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Bohnert J, Kern W (2005) Selected arylpiperazines ara capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrob Agent Chemother 49:849ā€“852

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Brown MH, Paulsen IT, Skurray RA (1999) The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol Micobiol 31:393ā€“395

    ArticleĀ  Google ScholarĀ 

  • Chamberland S, Lee M, Lee VJ, Leger R, Renau T, She MW, Zhang JZ (1999) WO9937667

    Google ScholarĀ 

  • Chamberland S, Ishida H, Lee VJ, Leger R, Nakayama K, Ohta T, Ohtsuka M, Renau T, Watkins W, Zhang JZ (2000) WO0001714

    Google ScholarĀ 

  • Chamberland S, Lee M, Leger R, Lee VJ, Renau T, Zhang JZ (2001) US6245746

    Google ScholarĀ 

  • Chevalier J, Bredin J, Mahamoud A (2004) Inhibitors of antibiotic efflux in resistant Enterobacter aerogenes and Klebsiella pneumoniae strains. Antimicrob Agent Chemother 48:1043ā€“1046

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Choudhuri BS, Sen S, Chakrabarti P (1999) Isoniazid accumulation in Mycobacterium smegmatis is modulated by proton motive force-driven and ATP-dependent extrusion systems. Biochem Biophys Res Commun 256:682ā€“684

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Cornwell MM, Pastan I, Gottesman MM (1987) Certain calcium channel blockers bind specifically to multidrug-resistant human KB carcinoma membrane vesicles and inhibit drug binding to P-glycoprotein. J Biol Chem 262:2166ā€“2170

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Cox AG (2010) Pharmacogenomics and drug transport/efflux. In: Zdanowicz MM (ed) Concepts in Pharmacogenomics. American Society of Health System Pharmacists, Bethesda, pp 129ā€“153

    Google ScholarĀ 

  • Davidson AL, Maloney PC (2007) ABC transporters: how small machines do a big job. Trends Microbiol 15(10):448ā€“455

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72(2):317ā€“364

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Delcour A (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808ā€“816

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • De Souza N, Patel MV, Gupte SV, Upad-Hyay DJ, Shukla MC, Chaturvedi NC, Bhawsar SB, Nair SC, Jafri NA, Khorakiwala HF (2002) WO0209758

    Google ScholarĀ 

  • Elkins C, Mullis L (2007) Substrate competition studies using whole-cell accumulation assays with the major tripartite multidrug efflux pumps of Escherichia coli. Antimicrob Agents Chemother 51:923ā€“929

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Gibbons S, Udo EE (2000) The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicilin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother Res 14:139ā€“140

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Grossman TH (2005) WO2005/007162

    Google ScholarĀ 

  • Hannula M, HƤnninen M (2008) Effect of putative efflux pump inhibitors and inducers on the antimicrobial susceptibility of Campylobacter jejuni and Campylobacter coli. J Med Microbiol 57:851ā€“855

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Hasdemir U, Chevalier J, Nordmann P (2004) Detection and prevalence of active drug efflux mechanisms in various multidrug-resistant Klebsiella pneumoniae strains from Turkey. J Clin Microbiol 42:2701ā€“2706

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hassan KA, Brzoska AJ, Wilson NL, Eijkelkamp BA, Brown MH, Paulsen IT (2011) Roles of DHA2 family transporters in drug resistance and iron homeostasis in Acinetobacter spp. J Mol Microbiol Biotechnol 20:116ā€“124

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • He X, Szewcyk PI, Karyakin A, Evin M, Hong WX, Zhang Q, Chang G (2010) Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature 467(7318):991ā€“994

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Hendricks O, Butterworth T, Kristiansen J (2003) The in vitro antimicrobial effect of non-antibiotics and putative inhibitors of efflux pumps on Pseudomonas aeruginosa and Staphylococcus aureus. Int J Antimicrob Agents 22:262ā€“264

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Jones PM, George AM (2004) The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Like Sci 61(6):682ā€“699

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Jones PM, OĀ“Mara ML, George AM (2009) ABC transporters: a riddle wrapped in a mistery inside an enigma. Trends Biochem Sci 34(10):520ā€“531

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kaatz GW, Moudgal VV, Seo SM, Hansen JB, Kristiansen JE (2003) Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureus. Int J Antimicrob Agents 22:254ā€“261

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kern WV, Oethinger M, Jellen-Ritter AS, Levy SB (2000) Non-target gene mutations in the development of fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother 44:814ā€“820

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Koronakis V, Eswaran J, Hughes C (2004) The bacterial exit duct for proteins and drugs. Annu Rev Biochem 73:467ā€“489

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Kumar A, Schweizer HP (2005) Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev 45:1486ā€“1513

    ArticleĀ  Google ScholarĀ 

  • Kuroda T, Tsuchiya T (2009) Multidrug efflux transporters in the MATE family. Biochim Biophys Acta 1794(5):763ā€“768

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lemaire M, Moreau N, Fournier DCJ, Chabert J, Marquez B, Marquet B, Neuville L, Pellet-Rostaing S, Bouhours P, Davis E, Joucla L (2006) WO2006018544

    Google ScholarĀ 

  • Levy SB (1998) US5811412

    Google ScholarĀ 

  • Li XZ, Nikaido H (2004) Efflux-mediated drug resistance in bacteria. Drugs 64:159ā€“204

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Lin J, MartĆ­nez A (2006) Effect of efflux pump inhibitors on bile resistance and in vivo colonization of Campylobacter jejuni. J Antimicrob Chemother 58:966ā€“972

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Livermore D (1995) Beta-lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8:557ā€“584

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Lomovskaya O, Lee A, Hoshino K, Ishida H, Mistry A, Warren M et al (1999) Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob Agents Chemother 43:1340ā€“1346

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Marchetti ML, Mestorino N (2013) Therapeutic alternatives against multidrug resistance by efflux pumps. Analecta Vet 33(1):22ā€“32

    Google ScholarĀ 

  • Marchetti ML, Errecalde J, Mestorino N (2011) Bacterial antibiotic resistance by efflux pumps. Multidrug resistance impact. Analecta Vet 31(2):40ā€“53

    Google ScholarĀ 

  • Markham PN, Mulhearn DC, Neyfakh AA, Crich D, Jaber MR, Johnson ME (2000) US99/28732

    Google ScholarĀ 

  • Marger MD, Saier MH (1993) A major superfamily of transmembrane facilitators that catalyze uniport, symport and antiport. Trends Biochem Sci 18(1):13ā€“20

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Mingeot-Leclercq M, Glupczynski Y, Tulkens P (1999) Aminoglycosides: activity and resistance. Antimicrob Agents Chemother 43:727ā€“737

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Molnar J, Hever A, Fakla I, Fischer J, Ocsovski I, AszalĆ³s A (1997) Inhibition of the transport function of membrane proteins by some substituted phenothiazines in E. coli and multidrug resistant tumor cells. Anticancer Res 17:481ā€“486

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Morita Y, Kataoka A, Shiota S, Mizushima T, Tsuchiya T (2000) NorM of Vibrio parahaemolyticus is an Na+-driven multidrug efflux pump. J Bacteriol 182(23):6694ā€“6697

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Nelson ML, Alekhsun MN (2004) WO2004/062674

    Google ScholarĀ 

  • Neu HC (1992) The crisis in antibiotic resistance. Science 257:1064ā€“1073

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Nikaido H (1996) Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 178(20):5853ā€“5859

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Oethinger M, Levy SB (2004) US6677133

    Google ScholarĀ 

  • Oethinger M, Kern WV, Jellen-Ritter AS, McMurry LM, Levy SB (2000) Inefectiveness of topoismerase mutations is mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob Agents Chemother 44:10ā€“13

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Okamoto K, Gotoh N, Nishino T (2001) Pseudomonas aeruginosa reveals high intrinsic resistance to penem antibiotics: penem resistance mechanisms and their interplay. Antimicrob Agents Chemother 45:1964ā€“1971

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Okusu H, Ma D, Nikaido H (1996) AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple antibiotic resistance (mar) mutants. J Bacteriol 178:306ā€“308

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Oldham ML, Davidson AL, Chen J (2008) Structural insights into ABC transporter mechanism. Curr Opin Struct Biol 18(6):726ā€“733

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Opperman TJ, Nguyen ST (2015) Recent advances toward a molecular mechanism of efflux pump inhibition. Front Microbiol. 6:421

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Padilla E, Llobet E, Domenech-SĆ”nchez A, MartĆ­nez-MartĆ­nez L, Bengoechea JA, Alberti S (2010) Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence. Antimicrob Agents Chemother 54(1):177ā€“183

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Pages JM, Mallea M, Chevalier J, Barbe J, Abdallah M, Kayirere MG (2003) FR2839647

    Google ScholarĀ 

  • Pao SS, Paulsen IT, Saier MH (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62(1):1ā€“34

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Piddock LJV (2006) Multidrug-resistance efflux pumps? Not just for resistance. Nat Rev Microbiol 4:629ā€“636

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Pos KM (2009) Drug transport mechanism of the AcrB efflux pump. Biochem Biophys Acta 1794:782ā€“793

    CASĀ  PubMedĀ  Google ScholarĀ 

  • Prasad R, Rawal MK (2014) Efflux pump proteins in antifungal resistance. Front Pharmacol 5:202

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Randall L, Ridley A, Cooles S, Sharma M, Sayers A, Pumbwe L et al (2003) Prevalence of multiple antibiotic resistance in 443 Campylobacter spp. Isolated from humans and animals. J Antimicrob Chemother 52:507ā€“510

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • RCSB Protein Databank. http://www.rcsb.org/pdb/home/home.do

  • Romanova NA, Wolffs PFG, Brovko LY, Griffiths MW (2006) Role of efflux pumps in adaptation and resistance of Listeria monocytogenes to Benzalkonium Chloride. Appl Environ Microbiol 72(5):3498ā€“3503

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • SĆ”enz Y, Ruiz J, Zarazaga M, TeixidĆ³ M, Torres C, Vila J (2004) Effect of the efflux pump inhibitor Phe-Arg-beta-naphthylamide on the MIC values of the quinolones, tetracycline and chloramphenicol, in Escherichia coli isolates of different origin. J Antimicrob Chemother 53:544ā€“545

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Schumacher A, Steinke P, Bohnert J, Akova M, Jonas D, Kern W (2006) Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Enterobacteriaceae other than Escherichia coli. J Antimicrob Chemother 57:344ā€“348

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Spratt R (1994) Resistance to antibiotic mediated by target alterations. Science 264:388ā€“393

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Thorrold C, Letsoalo M, DusĆ© A, Marais E (2007) Efflux pump activity in fluoroquinolone and tetracycline resistant Salmonella and Escherichia coli implicated in reduced susceptibility to household antimicrobial cleaning agents. Int J Food Microbiol 113:315ā€“320

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Transporter classification database. http://www.tcdb.org/

  • Van Bambeke F, Balzi E, Tulkens PM (2000) Antibiotic efflux pumps. Biochem Pharmacol 60:457ā€“470

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Van Bambeke F, Glupzynski Y, Plesiat P (2003) Antibiotic efflux pumps in prokaryotic cells: occurrence, impact for resistance and strategies for the future of antimicrobial therapy. J Antimicrob Chemother 51:1167ā€“1173

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Van Bambeke F, PagĆØs JM, Lee VJ (2010) Inhibitors of bacterial efflux pumps as adjuvants in antibacterial therapy and diagnostic tools for detection of resistance by efflux. Frontiers in anti-infective drug discovery 1:138ā€“175

    Google ScholarĀ 

  • Varga A, Hegyes P, Molnar J, Muesi I, Hever A, Szabo D, Kiessig S, Lage H, Gaal D, Nacsa J (2001) DE99-19923801 19990519

    Google ScholarĀ 

  • Webber M, Piddock L (2003) The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother 51:9ā€“11

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yan N (2013) Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem Sci 38(3):151ā€“159

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Yu EW, Mc Dermont G, Zgurskaya HI, Nikaido H, Koshland DE Jr (2003) Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science 300:976ā€“980

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Zechini B, Versace I (2009) Inhibitors of multidrug resistant efflux systems in bacteria. Recent Pat Antiinfect Drug Discov 4:37ā€“50

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. de Miguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Miguel, T., Rama, J.L.R., Feijoo-Siota, L., Ageitos, J.M., ViƱas, M. (2016). Mechanisms of Drug Efflux and Strategies to Overcome Them as a Way to Control Microbial Growth. In: Villa, T., Vinas, M. (eds) New Weapons to Control Bacterial Growth. Springer, Cham. https://doi.org/10.1007/978-3-319-28368-5_6

Download citation

Publish with us

Policies and ethics