Skip to main content

2016 | OriginalPaper | Buchkapitel

23. Towards Effective and Efficient Biofabrication Technologies

verfasst von : Andrés Díaz Lantada

Erschienen in: Microsystems for Enhanced Control of Cell Behavior

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The artificial production, in laboratories, of biological structures and even complete organs, by adequately placing and combining ex vivo cells, synthetically produced tissue patches and supporting biomaterials, including but not limited to tissue engineering scaffolds, is no more a matter of science fiction but a present relevant research challenge already providing promising results, included under an innovative area called “biofabrication”. If larger biological structures and complete organs could be synthetically obtained, patients would benefit from more rapid surgical interventions, compatibility would be highly promoted, as they would be produced ex vivo from the own patient’s cells, and aspects such as organ piracy would be limited. It is important to highlight that nowadays around 10 % of organs used for transplantation worldwide comes from illegal activities. The socio-economical impact of synthetic organ production is comparable to that of the whole pharmaceutical industry, what explains the interest it has arisen in the last decades, with several new companies and research centres worldwide aiming at improving state-of-the-art tissue engineering procedures for starting 3D tissue construction and organ biofabrication. In addition novel scientific journals and book series are being devoted to these advances and related concepts and techniques are starting to be included in the syllabuses of teaching programs at universities, what will for sure be very positive for the evolution of this area. This chapter provides a brief introduction to this field of research, discussing most relevant advances on materials science, design tools and manufacturing technologies that being combined for making biofabrication a viable alternative to conventional therapeutic procedures. Main present difficulties and remarkable research challenges are also discussed. It constitutes an updated version of “Chap. 14: Biofabrication: Main advances and Challenges” from Springer’s “Handbook on Advanced Design and Manufacturing Technologies for Medical Devices” also by Andrés Díaz Lantada (Díaz Lantada 2013).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Atala A, Yoo JJ (2015) Essentials of 3D biofabrication and translation. ISBN 9780128010150, Academic Press, Elsevier Atala A, Yoo JJ (2015) Essentials of 3D biofabrication and translation. ISBN 9780128010150, Academic Press, Elsevier
Zurück zum Zitat Bartolo PJS, Bidanda B (2008) Biomaterials and prototyping applications in medicine. Springer Bartolo PJS, Bidanda B (2008) Biomaterials and prototyping applications in medicine. Springer
Zurück zum Zitat Bartolo PJS, Almeida H, Laoui T (2009) Rapid prototyping and manufacturing for tissue engineering scaffolds. Tissue Eng 36(1):1–9 Bartolo PJS, Almeida H, Laoui T (2009) Rapid prototyping and manufacturing for tissue engineering scaffolds. Tissue Eng 36(1):1–9
Zurück zum Zitat Benyus JM (2002) Biomimicry. innovation inspired by nature. Harper Collins Publishers Benyus JM (2002) Biomimicry. innovation inspired by nature. Harper Collins Publishers
Zurück zum Zitat Boccaccini A, Kneser U, Arkudas A (2012) Scaffolds for vascularized bone regeneration: advances and challenges. Expert Rev Med Devices 9(5):457–460CrossRef Boccaccini A, Kneser U, Arkudas A (2012) Scaffolds for vascularized bone regeneration: advances and challenges. Expert Rev Med Devices 9(5):457–460CrossRef
Zurück zum Zitat Díaz Lantada A (2013) Handbook of advanced design and manufacturing technologies for biomedical devices. Springer Díaz Lantada A (2013) Handbook of advanced design and manufacturing technologies for biomedical devices. Springer
Zurück zum Zitat Gómez Ribelles JL, Monleón Pradas M, García Gómez R, Forriol F, Sancho-Tello M, Carda C (2010) The role of three-dimensional scaffolds in the regeneration of joint cartilage. In: Biodevices 2010—international conference on biomedical electronics and devices: special session on rapid prototyping for improving the development of biodevices. IEEE Eng Med Biol Soc, 20–23 Jan 2010 (in Valencia) Gómez Ribelles JL, Monleón Pradas M, García Gómez R, Forriol F, Sancho-Tello M, Carda C (2010) The role of three-dimensional scaffolds in the regeneration of joint cartilage. In: Biodevices 2010—international conference on biomedical electronics and devices: special session on rapid prototyping for improving the development of biodevices. IEEE Eng Med Biol Soc, 20–23 Jan 2010 (in Valencia)
Zurück zum Zitat Guo X, Liu X, Zhang B, Hu G, Bai J (2010) A combined fluorescence and microcomputer tomography system for small animal testing. IEEE Trans Biomed Eng 58:2876–2883 Guo X, Liu X, Zhang B, Hu G, Bai J (2010) A combined fluorescence and microcomputer tomography system for small animal testing. IEEE Trans Biomed Eng 58:2876–2883
Zurück zum Zitat Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524 Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524
Zurück zum Zitat Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001 Jakab K, Norotte C, Marga F, Murphy K, Vunjak-Novakovic G, Forgacs G (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001
Zurück zum Zitat Kanani C (2012) Cell printing: a novel method to seed cells onto biological scaffolds. Ph.D. Thesis, Worcester Polytechnic Institute Kanani C (2012) Cell printing: a novel method to seed cells onto biological scaffolds. Ph.D. Thesis, Worcester Polytechnic Institute
Zurück zum Zitat Langer RS, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef Langer RS, Vacanti JP (1993) Tissue engineering. Science 260:920–926CrossRef
Zurück zum Zitat Lenaghan SC, Serpersu K, Xia L, He W, Zhang M (2011) A naturally occurring nanomaterial from the Sundew (Drosera) for tissue engineering. Bioinspir Biomim 6:0460009CrossRef Lenaghan SC, Serpersu K, Xia L, He W, Zhang M (2011) A naturally occurring nanomaterial from the Sundew (Drosera) for tissue engineering. Bioinspir Biomim 6:0460009CrossRef
Zurück zum Zitat Li SJ, Xiong Z, Wang XH, Yan YN, Liu XH, Zhang RJ (2009) Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. J Bioact Biocompat Polym 24:249–265 Li SJ, Xiong Z, Wang XH, Yan YN, Liu XH, Zhang RJ (2009) Direct fabrication of a hybrid cell/hydrogel construct by a double-nozzle assembling technology. J Bioact Biocompat Polym 24:249–265
Zurück zum Zitat Marga F, Jakab F, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, Colbert S, Gabor F (2012) Toward engineering functional organ modules by additive manufacturing. Biofabrication 4:022001CrossRef Marga F, Jakab F, Khatiwala C, Shepherd B, Dorfman S, Hubbard B, Colbert S, Gabor F (2012) Toward engineering functional organ modules by additive manufacturing. Biofabrication 4:022001CrossRef
Zurück zum Zitat Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R (2009) Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1(2):022001CrossRef Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R (2009) Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1(2):022001CrossRef
Zurück zum Zitat Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917CrossRef Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917CrossRef
Zurück zum Zitat Ovsianikov A, Gruene M, Pflaum M, Koch L, Maiorana F, Wilhelmi M, Haverich A, Chichkov B (2010) Laser printing of cells into 3D scaffolds. Biofabrication 2:014104CrossRef Ovsianikov A, Gruene M, Pflaum M, Koch L, Maiorana F, Wilhelmi M, Haverich A, Chichkov B (2010) Laser printing of cells into 3D scaffolds. Biofabrication 2:014104CrossRef
Zurück zum Zitat Shi H, Farag AA, Fahmi R, Chen D (2008) Validation of finite element models of liver tissue using micro-CT. IEEE Trans Biomed Eng 55:978–985CrossRef Shi H, Farag AA, Fahmi R, Chen D (2008) Validation of finite element models of liver tissue using micro-CT. IEEE Trans Biomed Eng 55:978–985CrossRef
Metadaten
Titel
Towards Effective and Efficient Biofabrication Technologies
verfasst von
Andrés Díaz Lantada
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-29328-8_23

Neuer Inhalt