Skip to main content

2016 | OriginalPaper | Buchkapitel

2. Non-Adiabatic Scanning Calorimeter for Controlled Fast Cooling and Heating

verfasst von : Evgeny Zhuravlev, Christoph Schick

Erschienen in: Fast Scanning Calorimetry

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes a power-compensated differential fast scanning calorimeter, which allows heat capacity determination of nanogram samples on both controlled heating and cooling in the range from 100 to 10,000,000 K/s. A submikron SiNx membrane sensor was developed together with Xensor Integration as a basis of the calorimeter. Minimizing addenda heat capacity and aiming particularly on fast cooling, the active measuring area of the sensor was embedded into the central part of the membrane and has dimensions down to 5 × 5 μm2. The differential power-compensated temperature control scheme was designed for precise temperature control and heat capacity determination. Software programmable temperature scans allow transitions from controlled heating and cooling up to 5 MK/s to isotherm with over/undershoot less than 1 K and within 2 ms. Though the absolute values of sample temperature and heat capacity determination is still complicated due to the free-standing sample configuration, they can be measured with reproducibility ±1 K and 1 pJ/K sensitivity, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Watson ES, O'Neill MO, Justin J, Brenner N (1964) A differential scanning calorimeter for quantitative differential thermal analysis. Anal Chem 36:1233–1238CrossRef Watson ES, O'Neill MO, Justin J, Brenner N (1964) A differential scanning calorimeter for quantitative differential thermal analysis. Anal Chem 36:1233–1238CrossRef
2.
Zurück zum Zitat Pijpers MFJ, Mathot VBF, Goderis B, Scherrenberg R, van der Vegte E (2002) High-speed calorimetry for the analysis of kinetics of vitrification, crystallization, and melting of macromolecule. Macromolecules 35:3601–3613CrossRef Pijpers MFJ, Mathot VBF, Goderis B, Scherrenberg R, van der Vegte E (2002) High-speed calorimetry for the analysis of kinetics of vitrification, crystallization, and melting of macromolecule. Macromolecules 35:3601–3613CrossRef
3.
Zurück zum Zitat Wunderlich B (1973) Thermal analysis of polymers. J Therm Anal 5:117–136CrossRef Wunderlich B (1973) Thermal analysis of polymers. J Therm Anal 5:117–136CrossRef
4.
Zurück zum Zitat Mathot VBF, Poel GV, Pijpers TFJ, (2008) Chapter 8 benefits and potentials of high performance differential scanning calorimetry (HPer DSC), Handbook of Thermal Analysis and Calorimetry, Michael, E. Brown and Patrick K. Gallagher Eds. Elsevier Science B.V., 269–297 Mathot VBF, Poel GV, Pijpers TFJ, (2008) Chapter 8 benefits and potentials of high performance differential scanning calorimetry (HPer DSC), Handbook of Thermal Analysis and Calorimetry, Michael, E. Brown and Patrick K. Gallagher Eds. Elsevier Science B.V., 269–297
5.
Zurück zum Zitat PlasticsEurope, EuPC (2014) EPRO, Plastic -the Facts 2014 PlasticsEurope, EuPC (2014) EPRO, Plastic -the Facts 2014
6.
Zurück zum Zitat Schick C (2009) Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 395:1589–1611CrossRef Schick C (2009) Differential scanning calorimetry (DSC) of semicrystalline polymers. Anal Bioanal Chem 395:1589–1611CrossRef
7.
Zurück zum Zitat Poel GV, Mathot VBF (2006) High speed/high performance differential scanning calorimetry (HPer DSC): temperature calibration in the heating and cooling mode and minimization of thermal Lag. Thermochim Acta 446:41–54CrossRef Poel GV, Mathot VBF (2006) High speed/high performance differential scanning calorimetry (HPer DSC): temperature calibration in the heating and cooling mode and minimization of thermal Lag. Thermochim Acta 446:41–54CrossRef
8.
Zurück zum Zitat Denlinger DW, Abarra EN, Allen K, Rooney PW, Messer MT, Watson SK, Hellman F (1994) Thin-film microcalorimeter for heat-capacity measurements from 1.5-K TO 800-K. Rev Sci Instrum 65:946–958CrossRef Denlinger DW, Abarra EN, Allen K, Rooney PW, Messer MT, Watson SK, Hellman F (1994) Thin-film microcalorimeter for heat-capacity measurements from 1.5-K TO 800-K. Rev Sci Instrum 65:946–958CrossRef
9.
Zurück zum Zitat Olson EA, Efremov MY, Zhang M, Zhang ZS, Allen LH (2003) The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films. J Microelectromech Syst 12:355–364CrossRef Olson EA, Efremov MY, Zhang M, Zhang ZS, Allen LH (2003) The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat capacity measurements of ultrathin films. J Microelectromech Syst 12:355–364CrossRef
10.
Zurück zum Zitat Efremov MY, Schiettekatte F, Zhang M, Olson EA, Kwan AT, Berry RS, Allen LH (2000) Discrete periodic melting point observations for nanostructure ensembles. Phys Rev Lett 85:3560–3563CrossRef Efremov MY, Schiettekatte F, Zhang M, Olson EA, Kwan AT, Berry RS, Allen LH (2000) Discrete periodic melting point observations for nanostructure ensembles. Phys Rev Lett 85:3560–3563CrossRef
11.
Zurück zum Zitat Minakov AA, Adamovsky SA, Schick C (2005) Non adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432:177–185CrossRef Minakov AA, Adamovsky SA, Schick C (2005) Non adiabatic thin-film (chip) nanocalorimetry. Thermochim Acta 432:177–185CrossRef
12.
Zurück zum Zitat Adamovsky S, Schick C (2004) Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta 415:1–7CrossRef Adamovsky S, Schick C (2004) Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta 415:1–7CrossRef
13.
Zurück zum Zitat Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63CrossRef Adamovsky SA, Minakov AA, Schick C (2003) Scanning microcalorimetry at high cooling rate. Thermochim Acta 403:55–63CrossRef
14.
Zurück zum Zitat Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum 78:073902–073910CrossRef Minakov AA, Schick C (2007) Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instrum 78:073902–073910CrossRef
16.
Zurück zum Zitat Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta 505:14–21CrossRef Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim Acta 505:14–21CrossRef
17.
Zurück zum Zitat Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505:1–13CrossRef Zhuravlev E, Schick C (2010) Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim Acta 505:1–13CrossRef
18.
Zurück zum Zitat Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C (2011) Kinetics of nucleation and crystallization in poly(epsilon caprolactone). Polymer 52:1983–1997, PCLCrossRef Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C (2011) Kinetics of nucleation and crystallization in poly(epsilon caprolactone). Polymer 52:1983–1997, PCLCrossRef
19.
Zurück zum Zitat Trujillo M, Arnal ML, Müller AJ, Mujica MA, Urbina de Navarro C, Ruelle B, Dubois P (2012) Supernucleation and crystallization regime change provoked by MWNT addition to poly(ε-caprolactone). Polymer 53:832–841CrossRef Trujillo M, Arnal ML, Müller AJ, Mujica MA, Urbina de Navarro C, Ruelle B, Dubois P (2012) Supernucleation and crystallization regime change provoked by MWNT addition to poly(ε-caprolactone). Polymer 53:832–841CrossRef
20.
Zurück zum Zitat Minakov AA, Schick C (2015) Dynamics of the temperature distribution in ultra-fast thin-film calorimeter sensors. Thermochim Acta 603:205–217CrossRef Minakov AA, Schick C (2015) Dynamics of the temperature distribution in ultra-fast thin-film calorimeter sensors. Thermochim Acta 603:205–217CrossRef
21.
Zurück zum Zitat Müller A, Hernández Z, Arnal M, Sánchez J (1997) Successive self-nucleation/annealing (SSA): A novel technique to study molecular segregation during crystallization. Polym Bull 39:465–472CrossRef Müller A, Hernández Z, Arnal M, Sánchez J (1997) Successive self-nucleation/annealing (SSA): A novel technique to study molecular segregation during crystallization. Polym Bull 39:465–472CrossRef
22.
Zurück zum Zitat Zhuravlev E, Wurm A, Pötschke P, Androsch R, Schmelzer JWP, Schick C (2014) Kinetics of nucleation and crystallization of poly(ɛ -caprolactone)—multiwalled carbon nanotube composites. Eur Polym J 52:1–11CrossRef Zhuravlev E, Wurm A, Pötschke P, Androsch R, Schmelzer JWP, Schick C (2014) Kinetics of nucleation and crystallization of poly(ɛ -caprolactone)—multiwalled carbon nanotube composites. Eur Polym J 52:1–11CrossRef
23.
Zurück zum Zitat Androsch R, Lorenzo MLD, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51:4639–4662CrossRef Androsch R, Lorenzo MLD, Schick C, Wunderlich B (2010) Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer 51:4639–4662CrossRef
24.
Zurück zum Zitat Bosq N, Guigo N, Zhuravlev E, Sbirrazzuoli N (2013) Nonisothermal Crystallization of Polytetrafluoroethylene in a Wide Range of Cooling Rates. J Phys Chem B 117:3407–3415CrossRef Bosq N, Guigo N, Zhuravlev E, Sbirrazzuoli N (2013) Nonisothermal Crystallization of Polytetrafluoroethylene in a Wide Range of Cooling Rates. J Phys Chem B 117:3407–3415CrossRef
25.
Zurück zum Zitat Lai SL, Ramanath G, Allen LH, Infante P, Ma Z (1995) High-speed. Appl Phys Lett 67:1229–1231, 10(4)-degrees-C/S) scanning microcalorimetry with monolayer sensitivity (J/M(2)CrossRef Lai SL, Ramanath G, Allen LH, Infante P, Ma Z (1995) High-speed. Appl Phys Lett 67:1229–1231, 10(4)-degrees-C/S) scanning microcalorimetry with monolayer sensitivity (J/M(2)CrossRef
26.
Zurück zum Zitat Efremov MY, Olson EA, Zhang M, Schiettekatte F, Zhang Z, Allen LH (2004) Ultrasensitive, fast, thin-film differential scanning calorimeter. Rev Sci Instrum 75:179–191CrossRef Efremov MY, Olson EA, Zhang M, Schiettekatte F, Zhang Z, Allen LH (2004) Ultrasensitive, fast, thin-film differential scanning calorimeter. Rev Sci Instrum 75:179–191CrossRef
27.
Zurück zum Zitat Lopeandia AF, Valenzuela J, Rodríguez-Viejo J (2008) Power compensated thin film calorimetry at fast heating rates. Sensors Actuators A Phys 143:256–264CrossRef Lopeandia AF, Valenzuela J, Rodríguez-Viejo J (2008) Power compensated thin film calorimetry at fast heating rates. Sensors Actuators A Phys 143:256–264CrossRef
28.
Zurück zum Zitat Lopeandía AF, Cerdó LI, Clavaguera-Mora MT, Arana LR, Jensen KF, Muñoz FJ, Rodríguez-Viejoa J (2005) Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples. Rev Sci Instrum 76:065104CrossRef Lopeandía AF, Cerdó LI, Clavaguera-Mora MT, Arana LR, Jensen KF, Muñoz FJ, Rodríguez-Viejoa J (2005) Sensitive power compensated scanning calorimeter for analysis of phase transformations in small samples. Rev Sci Instrum 76:065104CrossRef
29.
Zurück zum Zitat Minakov A, Morikawa J, Hashimoto T, Huth H, Schick C (2006) Temperature distribution in a thin-film chip utilized for advanced nanocalorimetry. Meas Sci Technol 17:199–207CrossRef Minakov A, Morikawa J, Hashimoto T, Huth H, Schick C (2006) Temperature distribution in a thin-film chip utilized for advanced nanocalorimetry. Meas Sci Technol 17:199–207CrossRef
31.
Zurück zum Zitat Gao YL, Zhuravlev E, Zou CD, Yang B, Zhai QJ, Schick C (2009) Calorimetric measurements of undercooling in single micron sized SnAgCu particles in a wide range of cooling rates. Thermochim Acta 482:1–7CrossRef Gao YL, Zhuravlev E, Zou CD, Yang B, Zhai QJ, Schick C (2009) Calorimetric measurements of undercooling in single micron sized SnAgCu particles in a wide range of cooling rates. Thermochim Acta 482:1–7CrossRef
32.
Zurück zum Zitat Schick C, Hohne GWH (1991) On temperature calibration of power compensation DSC in cooling mode. Thermochim Acta 187:351–356CrossRef Schick C, Hohne GWH (1991) On temperature calibration of power compensation DSC in cooling mode. Thermochim Acta 187:351–356CrossRef
33.
Zurück zum Zitat Sarge SM, Hohne GWH, Cammenga HK, Eysel W, Gmelin E (2000) Temperature, heat and heat flow rate calibration of scanning calorimeters in the cooling mode. Thermochim Acta 361:1–20CrossRef Sarge SM, Hohne GWH, Cammenga HK, Eysel W, Gmelin E (2000) Temperature, heat and heat flow rate calibration of scanning calorimeters in the cooling mode. Thermochim Acta 361:1–20CrossRef
34.
Zurück zum Zitat Cammenga HK, Eysel W, Gmelin E, Hemminger W, Hohne GWH, Sarge SM (1993) The temperature calibration of scanning calorimeters : Part 2. Calibration substances. Thermochim Acta 219:333–342CrossRef Cammenga HK, Eysel W, Gmelin E, Hemminger W, Hohne GWH, Sarge SM (1993) The temperature calibration of scanning calorimeters : Part 2. Calibration substances. Thermochim Acta 219:333–342CrossRef
35.
Zurück zum Zitat Poel GV, Sargsyan A, Mathot V, Van Assche G, Wurm A, Schick C, Krumme A, Zhou D (2011) Recommendation for temperature calibration of fast scanning calorimeters (FsCs) for sample mass and scan rate. Beuth Verlag GmbH, Berlin Poel GV, Sargsyan A, Mathot V, Van Assche G, Wurm A, Schick C, Krumme A, Zhou D (2011) Recommendation for temperature calibration of fast scanning calorimeters (FsCs) for sample mass and scan rate. Beuth Verlag GmbH, Berlin
36.
Zurück zum Zitat Merzlyakov M (2006) Method of rapid (100,000 K/s) controlled cooling and heating of thin samples. Thermochim Acta 442:52–60CrossRef Merzlyakov M (2006) Method of rapid (100,000 K/s) controlled cooling and heating of thin samples. Thermochim Acta 442:52–60CrossRef
37.
Zurück zum Zitat Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): First findings on polymers. Thermochim Acta 522:36–45CrossRef Mathot V, Pyda M, Pijpers T, Vanden Poel G, van de Kerkhof E, van Herwaarden S, van Herwaarden F, Leenaers A (2011) The Flash DSC 1, a power compensation twin-type, chip-based fast scanning calorimeter (FSC): First findings on polymers. Thermochim Acta 522:36–45CrossRef
38.
Zurück zum Zitat Ahrenberg M, Brinckmann M, Schmelzer JWP, Beck M, Schmidt C, Keßler OH, Kragl U, Verevkin SP, Schick C (2014) Determination of volatility of ionic liquids at the nanoscale by means of ultra-fast scanning calorimetry. Phys Chem Chem Phys 16:2971–2980CrossRef Ahrenberg M, Brinckmann M, Schmelzer JWP, Beck M, Schmidt C, Keßler OH, Kragl U, Verevkin SP, Schick C (2014) Determination of volatility of ionic liquids at the nanoscale by means of ultra-fast scanning calorimetry. Phys Chem Chem Phys 16:2971–2980CrossRef
40.
Zurück zum Zitat Cebe P, Partlow BP, Kaplan DL, Wurm A, Zhuravlev E, Schick C (2015) Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochim Acta 615:8–14CrossRef Cebe P, Partlow BP, Kaplan DL, Wurm A, Zhuravlev E, Schick C (2015) Using flash DSC for determining the liquid state heat capacity of silk fibroin. Thermochim Acta 615:8–14CrossRef
41.
Zurück zum Zitat Zhuravlev E, Schmelzer JWP, Abyzov AS, Fokin VM, Androsch R, Schick C (2015) Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst Growth Des 15:786–798CrossRef Zhuravlev E, Schmelzer JWP, Abyzov AS, Fokin VM, Androsch R, Schick C (2015) Experimental test of Tammann’s nuclei development approach in crystallization of macromolecules. Cryst Growth Des 15:786–798CrossRef
42.
Zurück zum Zitat Mathot VBF (1994) Calorimetry and thermal analysis of polymers. Hanser Publishers, München Mathot VBF (1994) Calorimetry and thermal analysis of polymers. Hanser Publishers, München
43.
Zurück zum Zitat Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2012) Formation and reorganization of the mesophase of isotactic polypropylene. Mol Cryst Liq Cryst 556:74–83CrossRef Mileva D, Androsch R, Zhuravlev E, Schick C, Wunderlich B (2012) Formation and reorganization of the mesophase of isotactic polypropylene. Mol Cryst Liq Cryst 556:74–83CrossRef
Metadaten
Titel
Non-Adiabatic Scanning Calorimeter for Controlled Fast Cooling and Heating
verfasst von
Evgeny Zhuravlev
Christoph Schick
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-31329-0_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.