Skip to main content

Towards a Game-Based Learning Instructional Design Model Focusing on Integration

  • Chapter
  • First Online:
Instructional Techniques to Facilitate Learning and Motivation of Serious Games

Part of the book series: Advances in Game-Based Learning ((AGBL))

Abstract

This chapter focuses on a new instructional design model for game-based learning (GBL) that pinpoints the elements that are to be considered when designing learning environments in which GBL occurs. One key element of the model is discussed more in detail, being the integration of instructional elements in a GBLE. Based on different studies, the chapter concludes with emphasizing the importance of the design of the GBLE in the GBL processes. More specifically, the interplay between the instructional elements and the game elements is an important aspect in the GBL-process. Several decisions have to be made when designing a GBLE, and these decisions are of influence on GBL outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldrich, C. (2005). Learning by doing: A comprehensive guide to simulations, computer games, and pedagogy in e-learning and other educational experiences. San Francisco, CA: Pfeiffer.

    Google Scholar 

  • Aleven, V., Koedinger, K., Corbett, A. T., & Perfetti, C. (2015, August). The knowledge-learning-instruction (KLI) framework: Helping to bring science into practice. In B. de Koning (Chair), Invited SIG Symposium: Instructional design models—Do they still exist? Symposium conducted at the 16th Biennial EARLI Conference for Research on Learning and Instruction, Limassol, Cyprus.

    Google Scholar 

  • Baker, E. L., & Delacruz, G. C. (2008). A framework for the assessment of learning games. In H. F. O’Neil & R. S. Perez (Eds.), Computer games and team and individual learning (pp. 21–37). Oxford, UK: Elsevier.

    Google Scholar 

  • Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65–79. doi:10.1016/j.compedu.2013.08.003.

    Article  Google Scholar 

  • Broza, O., & Barzilai, S. (2011). When the mathematics of life meets school mathematics: Playing and learning on the “my money” website. In Y. Eshet-Alkalai, A. Caspi, S. Eden, N. Geri & Y. Yair (Eds.), Learning in the technological era: Proceedings of the Sixth Chais Conference on Instructional Technologies Research 2011 (pp. 92–100). Ra’anana, Israel: The Open University of Israel.

    Google Scholar 

  • Charsky, D., & Ressler, W. (2011). “Games are made for fun”: Lessons on the effects of concept maps in the classroom use of computer games. Computers & Education, 56, 604–615. doi:10.1016/j.compedu.2010.10.001.

    Article  Google Scholar 

  • Cheng, H. N. H., Wu, W. M. C., Liao, C. C. Y., & Chan, T.-W. (2009). Equal opportunities tactic: Redesigning and applying competition games in classrooms. Computers & Education, 53, 866–876. doi:10.1016/j.compedu.2009.05.006.

    Article  Google Scholar 

  • Clark, D. B., Nelson, B. C., Chang, H.-Y., Martinez-Garza, M., Slack, K., & D’Angelo, C. M. (2011). Exploring Newtonian mechanics in a conceptually-integrated digital game: Comparison of learning and affective outcomes for students in Taiwan and the United States. Computers & Education, 57, 2178–2195. doi:10.1016/j.compedu.2011.05.007.

    Article  Google Scholar 

  • Cobb, P., & McClain, K. (2005). Guiding inquiry-based math learning. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 171–186). Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511816833.012.

    Chapter  Google Scholar 

  • Cornillie, F. (2014). Adventures in red ink. Effectiveness of corrective feedback in digital game-based language learning. Unpublished doctoral dissertation, Katholieke Universiteit Leuven, Belgium.

    Google Scholar 

  • Darabi, A. A., Nelson, D. W., & Seel, N. M. (2009). Progression of mental models throughout the phases of a computer-based instructional simulation: Supportive information, practice, and performance. Computers in Human Behavior, 25, 723–730. doi:10.1016/j.chb.2009.01.009.

    Article  Google Scholar 

  • de Freitas, S., & Maharg, P. (2014). Series editors introduction. In N. Whitton (Ed.), Digital games and learning: Research and theory (pp. xiii–xiv). New York: Routledge.

    Google Scholar 

  • Echeverria, A., Barrios, E., Nussbaum, M., Améstica, M., & Leclerc, S. (2012). The atomic intrinsic integration approach: A structured methodology for the design of games for the conceptual understanding of physics. Computers & Education, 59, 806–816. doi:10.1016/j.compedu.2012.03.025.

    Article  Google Scholar 

  • Erhel, S., & Jamet, E. (2013). Digital game-based learning: Impact of instructions and feedback on motivation and learning effectiveness. Computers & Education, 67, 156–167. doi:10.1016/j.compedu.2013.02.019.

    Article  Google Scholar 

  • Felicia, P. (2011). How can digital games be used to teach the school curriculum. Retrieved from http://linked.eun.org/c/document_library/get_file?p_l_id=22779&folderId=24664&name=DLFE-783.pdf

  • Gagné, R. M., Briggs, L. J., & Wager, W. W. (1992). Principles of instructional design (4th ed.). Forth Worth, TX: Harcourt Brace Jovanovich College Publishers.

    Google Scholar 

  • Garris, R., Ahlers, R., & Driskell, J. E. (2002). Games, motivation, and learning: A research and practice model. Simulation & Gaming, 33, 441–467. doi:10.1177/1046878102238607.

    Article  Google Scholar 

  • Gee, J. P. (2011). Reflections on empirical evidence on games and learning. In S. Tobias & J. D. Fletcher (Eds.), Computer games and instruction (pp. 223–232). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Habgood, M. P. J., & Ainsworth, S. E. (2011). Motivating children to learn effectively: Exploring the value of intrinsic integration in educational games. Journal of the Learning Sciences, 20, 169–206. doi:10.1080/10508406.2010.508029.

    Article  Google Scholar 

  • Habgood, M. P. J., Ainsworth, S. E., & Benford, S. (2005). Endogenous fantasy and learning in digital games. Simulation & Gaming, 36, 483–498. doi:10.1177/1046878105282276.

    Article  Google Scholar 

  • Hays, R. T. (2005). The effectiveness of instructional games: A literature review and discussion (Technical Report No. 2005-004). Orlando, FL: Naval Air Warfare Center Training Systems Division.

    Google Scholar 

  • Henderson, L., Klemes, J., & Eshet, Y. (2000). Just playing a game? Educational simulation software and cognitive outcomes. Journal of Educational Computing Research, 22, 105–129. doi:10.2190/EPJT-AHYQ-1LAJ-U8WK.

    Article  Google Scholar 

  • Holbert, N., & Wilensky, U. (2012). Representational congruence: Connecting video game experiences to the design and use of formal representations. Proceedings of Constructionism 2012.

    Google Scholar 

  • Honey, M. A., & Hilton, M. (Eds.). (2011). Learning science through computer games and simulations. Washington, DC: The National Academies Press.

    Google Scholar 

  • Inspectie van het Onderwijs. (2009). De staat van het onderwijs. Onderwijsverslag 2007/2008 [The state of education. Education report (2007/2008)]. De Meern: Inspectie van het Onderwijs.

    Google Scholar 

  • Johnson, C. I., & Mayer, R. E. (2010). Applying the self-explanation principle to multimedia learning in a computer-based game-like environment. Computers in Human Behavior, 26, 1246–1252. doi:10.1016/j.chb.2010.03.025.

    Article  Google Scholar 

  • Jonassen, D. H., Campbell, J. P., & Davidson, M. E. (1994). Learning with media: Restructuring the debate. Educational Technology Research & Development, 42, 31–39. doi:10.1007/BF02299089.

    Article  Google Scholar 

  • Ke, F. (2008). Computer games application within alternative classroom goal structures: Cognitive, metacognitive, and affective evaluation. Educational Technology Research and Development, 56, 539–556. doi:10.1007/s11423-008-9086-5.

    Article  Google Scholar 

  • Ke, F. (2009). A qualitative meta-analysis of computer games as learning tools. In R. E. Ferdig (Ed.), Handbook of research on effective electronic gaming in education (pp. 1–32). Hershey, PA: IGI Global. doi:10.4018/978-1-59904-808-6.ch001.

    Chapter  Google Scholar 

  • Ke, F., & Grabowski, B. (2007). Gameplaying for maths learning: Cooperative or not? British Journal of Educational Technology, 38, 249–259. doi:10.1111/j.1467-8535.2006.00593.x.

    Article  Google Scholar 

  • Lee, J. (1999). Effectiveness of computer-based instructional simulation: A meta analysis. International Journal of Instructional Media, 26(1), 71–85.

    Google Scholar 

  • Leemkuil, H., & de Jong, T. (2011). Instructional support in games. In S. Tobias & J. D. Fletcher (Eds.), Computer games and instruction (pp. 353–369). Charlotte, NC: Information Age Publishing Inc.

    Google Scholar 

  • Liu, Y., & Rojewski, J. W. (2013). Effects of instructional support in game-based learning: An analysis of educational games from design and application perspectives. In R. McBride & M. Searson (Eds.), Proceedings of Society for Information Technology & Teacher Education International Conference 2013 (pp. 43–50). Chesapeake, VA: Association for the Advancement of Computing in Education (AACE).

    Google Scholar 

  • Lowyck, J., Elen, J., & Clarebout, G. (2004). Instructional conceptions: Analyses from an instructional design perspective. International Journal of Educational Research, 41, 429–444. doi:10.1016/j.ijer.2005.08.010.

    Article  Google Scholar 

  • Malone, T. W. (1980). What makes things fun to learn? Heuristics for designing instructional computer games. In Proceedings of the 3rd ACM SIGSMALL Symposium and the 1st SIGPC Symposium (pp. 162–169). doi: 10.1145/800088.802839.

  • Malone, T. W. (1981). Toward a theory of intrinsically motivating instruction. Cognitive Science, 5, 333–369. doi:10.1016/S0364-0213(81)80017-1.

    Article  Google Scholar 

  • Malone, T. W., & Lepper, M. R. (1987). Making learning fun: A taxonomy of intrinsic motivation for learning. In R. E. Snow & M. J. Farr (Eds.), Aptitude, learning and instruction. Vol. 3: Conative and affective process analysis (pp. 223–253). Hillsdale, NJ: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Mayer, R. E., & Johnson, C. I. (2010). Adding instructional features that promote learning in a game-like environment. Journal of Educational Computing Research, 42, 241–265. doi:10.2190/EC.42.3.a.

    Article  Google Scholar 

  • Merrill, M. D. (2002). First principles of instruction. Educational Technology Research and Development, 50(3), 43–59. doi:10.1007/BF02505024.

    Article  Google Scholar 

  • Miller, C. S., Lehman, J. F., & Koedinger, K. R. (1999). Goals and learning in micro worlds. Cognitive Science, 23, 305–336. doi:10.1207/s15516709cog2303_2.

    Article  Google Scholar 

  • Moreno, R., & Mayer, R. E. (2005). Role of guidance, reflection, and interactivity in an agent-based multimedia game. Journal of Educational Psychology, 97, 117–128. doi:10.1037/0022-0663.97.1.117.

    Article  Google Scholar 

  • Peng, W., & Hsieh, G. (2012). The influence of competition, cooperation, and player relationship in a motor performance centered computer game. Computers in Human Behavior, 28, 2100–2106. doi:10.1016/j.chb.2012.06.014.

    Article  Google Scholar 

  • Placklé, I., Könings, K. D., Jacquet, W., Struyven, K., Libotton, A., van Merriënboer, J. J. G., et al.. (2014). Students’ preferred characteristics of learning environments in vocational secondary education. International Journal for Research in Vocational Education and Training (IJRVET), 1, 107–124. doi: 10.13152/IJRVET.1.2.2.

    Google Scholar 

  • Reigeluth, C. M., Merrill, M. D., Wilson, B. G., & Spiller, R. T. (1980). The elaboration theory of instruction: A model for sequencing and synthesizing instruction. Instructional Science, 9, 195–219. doi:10.1007/BF00177327.

    Article  Google Scholar 

  • Richards, D., Fassbender, E., Bilgin, A., & Thompson, W. F. (2008). An investigation of the role of background music in IVW’s for learning. ALT-J: Research in Learning Technology, 16, 231–244.

    Article  Google Scholar 

  • Ryder, M. (2015). Instructional design models and methods. Retrieved from http://www.instructionaldesigncentral.com/htm/IDC_instructionaldesignmodels.htm#gagne

  • Shaffer, D. W. (2004). Pedagogical praxis: The professions as models for postindustrial education. Teachers College Record, 106, 1401–1421.

    Article  Google Scholar 

  • Shute, V. J., & Zapata-Rivera, D. (2008). Adaptive technologies. In J. M. Spector, M. D. Merrill, J. J. G. van Merriënboer, & M. P. Driscoll (Eds.), Handbook of research on educational communication and technology (3rd ed., pp. 277–294). New York, NY: Taylor and Francis.

    Google Scholar 

  • Struyven, K., Dochy, F., Janssens, S., & Gielen, S. (2008). Students’ experiences with contrasting learning environments: The added value of students’ perceptions. Learning Environments Research, 11, 83–109. doi:10.1007/s10984-008-9041-8.

    Article  Google Scholar 

  • ter Vrugte, J., de Jong, T., Vandercruysse, S., Wouters, P., van Oostendorp, H., & Elen, J. (2015). How competition and heterogeneous collaboration interact in prevocational game-based mathematics education. Computers & Education, 89, 42–52. doi:10.1016/j.compedu.2015.08.010.

    Article  Google Scholar 

  • ter Vrugte, J., de Jong, T., Wouters, P., Vandercruysse, S., Elen, J., & van Oostendorp, H. (2015). When a game supports prevocational math education but integrated reflection does not. Journal of Computer Assisted Learning, 31, 462–480. doi:10.1111/jcal.12104.

    Article  Google Scholar 

  • Tobias, S. (1982). When do instructional methods make a difference? Educational Researcher, 11(4), 4–9.

    Google Scholar 

  • Tobias, S. (2009). An eclectic appraisal of the success or failure of constructivist instruction. In S. Tobias & T. D. Duffy (Eds.), Constructivist theory applied to education: Success or failure? (pp. 335–350). New York: Routledge, Taylor and Francis.

    Google Scholar 

  • Tobias, S., & Fletcher, J. D. (2012). Learning from computer games: A research review. In S. De Wannemacker, S. Vandercruysse, & G. Clarebout, (Eds.), Serious games: The challenge. (Vol. CCIS 280, pp. 6–18). Berlin, Germany: Springer. doi: 10.1007/978-3-642-33814-4_2.

  • Tobias, S., Fletcher, J. D., Dai, D. Y., & Wind, A. P. (2011). Review of research on computer games. In S. Tobias & J. D. Fletcher (Eds.), Computer games and instruction (pp. 127–221). Charlotte, NC: Information Age Publishing Inc.

    Google Scholar 

  • Vandercruysse, S., ter Vrugte, J., de Jong, T., Wouters, P., van Oostendorp, H., Verschaffel, L., et al. (accepted). Content integration as a factor in math game effectiveness. Educational Technology Research & Development.

    Google Scholar 

  • Vandercruysse, S., Desmet, E., Vandewaetere, M., & Elen, J. (2015). Integration in the curriculum as a factor in math-game effectiveness. In J. Torbeyns, E. Lehtinen, & J. Elen (Eds.), Describing and studying domain‐specific serious games (pp. 133–153). Cham, Switzerland: Springer International Publishing AG. doi:10.1007/978-3-319-20276-1_9.

    Chapter  Google Scholar 

  • Vandercruysse, S., ter Vrugte, J., de Jong, T., Wouters, P., van Oostendorp, H., Verschaffel, L., et al. (2016). The effectiveness of a math game: The impact of integrating conceptual clarification as support. Computer in Human Behaviour. 64, 21–33.

    Google Scholar 

  • Vandercruysse, S., ter Vrugte, J., de Jong, T., Wouters, P., van Oostendorp, H., Verschaffel, L., et al. (n.d.). The effectiveness of a math game: The impact of integrating part task practice as support. Computers & Education.

    Google Scholar 

  • Vandercruysse, S., Van Cauwenberghe, V., & Elen, J. (n.d.). The effectiveness of game-based learning: The impact of curriculum integration. Journal of Curriculum Studies.

    Google Scholar 

  • Vandercruysse, S., van Weijnen, S., Vandewaetere, M., & Elen, J. (2015). Competitie als game element integreren in de BSO-klaspraktijk. [Integrating competition as game element in the vocational secondary classroom]. Pedagogische Studiën, 92, 179–201.

    Google Scholar 

  • Vandercruysse, S., Vandewaetere, M., & Clarebout, G. (2012). Game-based learning: A review on the effectiveness of educational games. In M. Cruz-Cunha (Ed.), Handbook of research on serious games as educational, business, and research tools (pp. 628–647). Hershey, PA: IGI Global. doi:10.4018/978-1-4666-0149-9.ch032.

    Chapter  Google Scholar 

  • Vandewaetere, M., Vandercruysse, S., & Clarebout, G. (2012). Learners’ perceptions and illusions of adaptivity in compute-based learning environments. Educational Technology Research and Development, 60, 307–324. doi:10.1007/s11423-011-9225-2.

    Article  Google Scholar 

  • Vlaamse Overheid. (2010). Project Algemene Vakken. Concretisering eindtermen. Secundair onderwijs—Tweede graad BSO [Project General Subjects. Reifying the attainment targets. Secondary education—Second grade VSE]. Brussel: Vlaams Ministerie van Onderwijs en Vorming.

    Google Scholar 

  • Walker, D. F., & Soltis, J. F. (1997). Curriculum and aims. New York, NY: Teachers College Press.

    Google Scholar 

  • Winne, P. H. (1987). Why process-product research cannot explain process-product finding and a proposed remedy: the cognitive mediational paradigm. Teaching and Teacher Education, 3, 333–356. doi:10.1016/0742-051X(87)90025-4.

    Article  Google Scholar 

  • Winne, P. H. (2004). Students’ calibration of knowledge and learning processes: Implications for designing powerful software learning environments. International Journal of Educational Research, 41, 466–488. doi:10.1016/j.ijer.2005.08.012.

    Article  Google Scholar 

  • Wouters, P., & van Oostendorp, H. (2013). A meta-analytic review of the role of instructional support in game-based learning. Computers & Education, 60, 412–425. doi:10.1016/j.compedu.2012.07.018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylke Vandercruysse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vandercruysse, S., Elen, J. (2017). Towards a Game-Based Learning Instructional Design Model Focusing on Integration. In: Wouters, P., van Oostendorp, H. (eds) Instructional Techniques to Facilitate Learning and Motivation of Serious Games. Advances in Game-Based Learning. Springer, Cham. https://doi.org/10.1007/978-3-319-39298-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39298-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39296-7

  • Online ISBN: 978-3-319-39298-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics