Skip to main content

Nanotechnology in Food Processing and Packaging

  • Chapter
  • First Online:
Nanoscience in Food and Agriculture 1

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 20))

Abstract

Food products are complex mixtures including proteins, carbohydrates and lipids that are shaped at the nanoscale. These food nanomaterials are either naturally present within foods or created during transformation of initial products. Recent research has revealed several applications of food-based nanomaterials for food processing and packaging. For instance nanoparticles protect and control the delivery of antimicrobial compounds, lipid-soluble vitamins, flavours and antioxidants. Nanoparticles are also used as delivery vehicles such as pickering emulsions, multi-layered emulsions and solid-lipid nanoparticles. Nanosensors can detect rapidly toxic substances in food. In food packaging, nanoparticles can protect functional ingredients such as antimicrobials or vitamins. Chitosan nanoparticles are used as antimicrobial compounds to enhance food safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ades H, Kesselman E, Ungar Y, Shimoni E (2012) Complexation with starch for encapsulation and controlled release of menthone and menthol. LWT-Food Sci Technol 45:277–288

    Article  CAS  Google Scholar 

  • Aguilera JM, Lillford PJ (2008) Structure–property relationships in foods. In: Food materials science. Springer, New York, pp 229–253

    Google Scholar 

  • Ahvenainen R (2003) Novel food packaging techniques. Elsevier, Cambridge

    Book  Google Scholar 

  • Astray G, Gonzalez-Barreiro C, Mejuto J, Rial-Otero R, Simal-Gándara J (2009) A review on the use of cyclodextrins in foods. Food Hydrocoll 23:1631–1640

    Article  CAS  Google Scholar 

  • Atta AM, El-Mahdy GA, Al-Lohedan HA, Ezzat A-RO (2015) Synthesis of nonionic amphiphilic chitosan nanoparticles for active corrosion protection of steel. J Mol Liq 211:315–323

    Article  CAS  Google Scholar 

  • Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA (2014) Alginate/chitosan nanoparticles for encapsulation and controlled release of vitamin B2. Int J Biol Macromol 71:141–146

    Article  CAS  PubMed  Google Scholar 

  • Baouz T, Acik E, Rezgui F, Yilmazer U (2015) Effects of mixing protocols on impact modified poly (lactic acid) layered silicate nanocomposites. J Appl Polymer Sci 41518:1–14

    Google Scholar 

  • Bastarrachea LJ, Denis-Rohr A, Goddard JM (2015) Antimicrobial food equipment coatings: applications and challenges. Ann Rev Food Sci Technol 6:97–118

    Article  CAS  Google Scholar 

  • Bergeson LL (2013) Sustainable nanomaterials: emerging governance systems. ACS Sustain Chem Eng 1:724–730

    CAS  Google Scholar 

  • Beyki M, Zhaveh S, Khalili ST, Rahmani-Cherati T, Abollahi A, Bayat M, Tabatabaei M, Mohsenifar A (2014) Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind Crop Prod 54:310–319

    Article  CAS  Google Scholar 

  • Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34:9189–9192

    Article  CAS  Google Scholar 

  • Bi L, Yang L, Narsimhan G, Bhunia AK, Yao Y (2011) Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J Control Release 150:150–156

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK, Shams MI, Das AK, Islam MN, Nazhad MM (2015) Flexible and transparent chitin/acrylic nanocomposite films with high mechanical strength. Fibers Polym 16:774–781

    Article  CAS  Google Scholar 

  • Bodaghi H, Mostofi Y, Oromiehie A, Ghanbarzadeh B, Hagh ZG (2015) Synthesis of clay–TiO2 nanocomposite thin films with barrier and photocatalytic properties for food packaging application. J Appl Polymer Sci 41764:1–8

    Google Scholar 

  • Böhm V, Puspitasari-Nienaber NL, Ferruzzi MG, Schwartz SJ (2002) Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene, and zeaxanthin. J Agric Food Chem 50:221–226

    Article  PubMed  CAS  Google Scholar 

  • Boland M, Golding M, Singh H (2014) Food structures, digestion and health. Academic, San Diego

    Google Scholar 

  • Bournival G, Ata S (2015) Foaming and gas holdup of esterified nanoparticle dispersions in the presence of sodium chloride. Colloids Surf A Physicochem Eng Asp 480:245–252

    Article  CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, De Heer C, Ten Voorde SE, Wijnhoven SW, Marvin HJ, Sips AJ (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    Article  CAS  PubMed  Google Scholar 

  • Brody AL, Bugusu B, Han JH, Sand CK, McHugh TH (2008) Scientific status summary. J Food Sci 73:R107–R116

    Article  CAS  PubMed  Google Scholar 

  • Burgain J, Gaiani C, Linder M, Scher J (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J Food Eng 104:467–483

    Article  CAS  Google Scholar 

  • Calligaris S, Da Pieve S, Arrighetti G, Barba L (2010) Effect of the structure of monoglyceride–oil–water gels on aroma partition. Food Res Int 43:671–677

    Article  CAS  Google Scholar 

  • Camerlo A, Vebert-Nardin C, Rossi RM, Popa A-M (2013) Fragrance encapsulation in polymeric matrices by emulsion electrospinning. Eur Polym J 49:3806–3813

    Article  CAS  Google Scholar 

  • Cao G (2004) Synthesis, properties and applications. World Scientific, Singapore

    Google Scholar 

  • Carneiro-da-Cunha MG, Cerqueira MA, Souza BW, Carvalho S, Quintas MA, Teixeira JA, Vicente AA (2010) Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydr Polym 82:153–159

    Article  CAS  Google Scholar 

  • Cavaliere E, De Cesari S, Landini G, Riccobono E, Pallecchi L, Rossolini GM, Gavioli L (2015) Highly bactericidal Ag nanoparticle films obtained by cluster beam deposition. Nanomed Nanotechnol Biol Med 11:1417–1423

    Article  CAS  Google Scholar 

  • Ceruti F, Lazzari S, Lazzari F (2006) Traceability in the wheat production chain. In: 9th International working conference on Stored Product Protection, San Paulo, Brazil, pp 1198–1205

    Google Scholar 

  • Chau C-F, Wu S-H, Yen G-C (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280

    Article  CAS  Google Scholar 

  • Chen MJ, Chen KN (2007) Applications of probiotic encapsulation in dairy products. Encapsulation Control Release Technol Food Syst 1:83–112

    Google Scholar 

  • Chen H, Weiss J, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. Food Technol 3:30–36

    Google Scholar 

  • Chen C, Li D, Hu Q, Wang R (2014a) Properties of polymethyl methacrylate-based nanocomposites: reinforced with ultra-long chitin nanofiber extracted from crab shells. Mater Des 56:1049–1056

    Article  CAS  Google Scholar 

  • Chen H, Seiber JN, Hotze M (2014b) ACS select on nanotechnology in food and agriculture: a perspective on implications and applications. J Agric Food Chem 62:1209–1212

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang Y, Zhong Q (2015) Physical and antimicrobial properties of spray-dried zein–casein nanocapsules with co-encapsulated eugenol and thymol. Journal of Food Engineering 144:93–102

    Article  CAS  Google Scholar 

  • Chevalier Y, Bolzinger M-A (2013) Emulsions stabilized with solid nanoparticles: pickering emulsions. Colloids Surf A Physicochem Eng Asp 439:23–34

    Article  CAS  Google Scholar 

  • Chiellini E (2008) Environmentally compatible food packaging. Sawston, Cambridge

    Google Scholar 

  • Chopra M, Kaur P, Bernela M, Thakur R (2014) Surfactant assisted nisin loaded chitosan-carageenan nanocapsule synthesis for controlling food pathogens. Food Control 37:158–164

    Article  CAS  Google Scholar 

  • Coles D, Frewer LJ (2013) Nanotechnology applied to European food production – a review of ethical and regulatory issues. Trends Food Sci Technol 34:32–43

    Article  CAS  Google Scholar 

  • Coles R, McDowell D, Kirwan MJ (2003) Food packaging technology. CRC Press, Oxford

    Google Scholar 

  • Cruz-Romero M, Murphy T, Morris M, Cummins E, Kerry J (2013) Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control 34:393–397

    Article  CAS  Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry–recent developments, risks and regulation. Trends Food Sci Technol 24:30–46

    Article  CAS  Google Scholar 

  • Damm C, Münstedt H, Rösch A (2008) The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Mater Chem Phys 108:61–66

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Dasgupta N, Ranjan S, Mundra S, Ramalingam C, Kumar A (2016) Fabrication of food grade vitamin E nanoemulsion by low energy approach, characterization and its application. Int J Food Prop 19:700–708. doi:10.1080/10942912.2015.1042587

    Google Scholar 

  • Dasgupta N, Shivendu R, Bhavapriya R, Venkatraman M, Chidambaram R, Avadhani GS, Ashutosh K (2016b) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 23(5):4149–4163. doi:10.1007/s11356-015-4570-z

    Article  CAS  Google Scholar 

  • Dasgupta N, Shivendu R, Patra D, Srivastava P, Kumar A, Ramalingam C (2016c) Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation. Chem Biol Interact 253:100–111. doi:10.1016/j.cbi.2016.05.018

    Article  CAS  PubMed  Google Scholar 

  • Davidov-Pardo G, McClements DJ (2014) Resveratrol encapsulation: designing delivery systems to overcome solubility, stability and bioavailability issues. Trends Food Sci Technol 38:88–103

    Article  CAS  Google Scholar 

  • Davis S, Haldipur J, Zhao Y, Dan N, Pan Y, Nitin N, Tikekar RV (2015) Effect of distribution of solid and liquid lipid domains on transport of free radicals in nanostructured lipid carriers. LWT-Food Sci Technol 64:14–17

    Article  CAS  Google Scholar 

  • de Mello MB, da Silva Malheiros P, Brandelli A, da Silveira NP, Jantzen MM, da Motta ADS (2013) Characterization and antilisterial effect of phosphatidylcholine nanovesicles containing the antimicrobial peptide pediocin. Probiotics Antimicrob Proteins 5:43–50

    Article  CAS  PubMed  Google Scholar 

  • de Paiva LB, Morales AR, Valenzuela Díaz FR (2008) Organoclays: properties, preparation and applications. Appl Clay Sci 42:8–24

    Article  CAS  Google Scholar 

  • de Vos P, Faas MM, Spasojevic M, Sikkema J (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20:292–302

    Article  CAS  Google Scholar 

  • Decker JJ, Meyers KP, Paul DR, Schiraldi DA, Hiltner A, Nazarenko S (2015) Polyethylene-based nanocomposites containing organoclay: a new approach to enhance gas barrier via multilayer coextrusion and interdiffusion. Polymer 61:42–54

    Article  CAS  Google Scholar 

  • Devaramani S, Malingappa P (2012) Synthesis and characterization of cobalt nitroprusside nano particles: application to sulfite sensing in food and water samples. Electrochim Acta 85:579–587

    Article  CAS  Google Scholar 

  • Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhatt D, Sreedhar B (2016) Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C 58:36–43

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090

    Article  CAS  PubMed  Google Scholar 

  • Donsì F, Annunziata M, Sessa M, Ferrari G (2011) Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Sci Technol 44:1908–1914

    Article  CAS  Google Scholar 

  • Donsì F, Annunziata M, Vincensi M, Ferrari G (2012) Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. J Biotechnol 159:342–350

    Article  PubMed  CAS  Google Scholar 

  • Donsì F, Cuomo A, Marchese E, Ferrari G (2014) Infusion of essential oils for food stabilization: unraveling the role of nanoemulsion-based delivery systems on mass transfer and antimicrobial activity. Innovative Food Sci Emerg Technol 22:212–220

    Article  CAS  Google Scholar 

  • Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24

    Article  CAS  PubMed  Google Scholar 

  • Espitia PJP, Soares NDFF, Teófilo RF, Coimbra JSDR, Vitor DM, Batista RA, Ferreira SO, de Andrade NJ, Medeiros EAA (2013) Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr Polym 94:199–208

    Article  CAS  PubMed  Google Scholar 

  • Falguera V, Quintero JP, Jiménez A, Muñoz JA, Ibarz A (2011) Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci Technol 22:292–303

    Article  CAS  Google Scholar 

  • Fang Z, Bhandari B (2010) Encapsulation of polyphenols–a review. Trends Food Sci Technol 21:510–523

    Article  CAS  Google Scholar 

  • Farhoodi M, Mousavi SM, Sotudeh‐Gharebagh R, Emam‐Djomeh Z, Oromiehie A (2014) Migration of aluminum and silicon from PET/clay nanocomposite bottles into acidic food simulant. Packag Technol Sci 27:161–168

    Article  CAS  Google Scholar 

  • Fikselova M, Silhar S, Marecek J, Francakova H (2008) Extraction of carrot (Daucus carota L.) carotenes under different conditions. Czech J Food Sci 26:268–274

    CAS  Google Scholar 

  • Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956

    Article  CAS  PubMed  Google Scholar 

  • Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90:1847–1868

    Article  CAS  PubMed  Google Scholar 

  • Fox EM, Wall PG, Fanning S (2015) Control of Listeria species food safety at a poultry food production facility. Food Microbiol 51:81–86

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Vary PS, Lin C-T (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898

    Article  CAS  PubMed  Google Scholar 

  • Fukui Y, Maruyama T, Iwamatsu Y, Fujii A, Tanaka T, Ohmukai Y, Matsuyama H (2010) Preparation of monodispersed polyelectrolyte microcapsules with high encapsulation efficiency by an electrospray technique. Colloids Surf A Physicochem Eng Asp 370:28–34

    Article  CAS  Google Scholar 

  • Ghaderi M, Mousavi M, Yousefi H, Labbafi M (2014) All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application. Carbohydr Polym 104:59–65

    Article  CAS  PubMed  Google Scholar 

  • Gong L, Li T, Chen F, Duan X, Yuan Y, Zhang D, Jiang Y (2016) An inclusion complex of eugenol into β-cyclodextrin: preparation, and physicochemical and antifungal characterization. Food Chem 196:324–330

    Article  CAS  PubMed  Google Scholar 

  • Gorrasi G, Senatore V, Vigliotta G, Belviso S, Pucciariello R (2014) PET–halloysite nanotubes composites for packaging application: preparation, characterization and analysis of physical properties. Eur Polym J 61:145–156

    Article  CAS  Google Scholar 

  • Gortzi O, Lalas S, Tsaknis J, Chinou I (2007) Enhanced bioactivity of Citrus limon (Lemon Greek cultivar) extracts, essential oil and isolated compounds before and after encapsulation in liposomes. Planta Med 73:184

    Article  Google Scholar 

  • Grunert KG (2005) Food quality and safety: consumer perception and demand. Eur Rev Agric Econ 32:369–391

    Article  Google Scholar 

  • Gutiérrez FJ, Albillos SM, Casas-Sanz E, Cruz Z, García-Estrada C, García-Guerra A, García-Reverter J, García-Suárez M, Gatón P, González-Ferrero C (2013) Methods for the nanoencapsulation of β-carotene in the food sector. Trends Food Sci Technol 32:73–83

    Article  CAS  Google Scholar 

  • Guttoff M, Saberi AH, McClements DJ (2015) Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Food Chem 171:117–122

    Article  CAS  PubMed  Google Scholar 

  • Ha TVA, Kim S, Choi Y, Kwak H-S, Lee SJ, Wen J, Oey I, Ko S (2015) Antioxidant activity and bioaccessibility of size-different nanoemulsions for lycopene-enriched tomato extract. Food Chem 178:115–121

    Article  CAS  PubMed  Google Scholar 

  • Haaj SB, Thielemans W, Magnin A, Boufi S (2014) Starch nanocrystal stabilized pickering emulsion polymerization for nanocomposites with improved performance. ACS Appl Mater Interfaces 6:8263–8273

    Article  CAS  PubMed  Google Scholar 

  • Hakovirta M, Aksoy B, Hakovirta J (2015) Self-assembled micro-structured sensors for food safety in paper based food packaging. Mater Sci Eng C 53:331–335

    Article  CAS  Google Scholar 

  • Han JH (2005) Innovations in food packaging. Academic, London

    Google Scholar 

  • Herrera N, Salaberria AM, Mathew AP, Oksman K (2015) Plasticized polylactic acid nanocomposite films with cellulose and chitin nanocrystals prepared using extrusion and compression molding with two cooling rates: effects on mechanical, thermal and optical properties. Compos Part A Appl Sci Manuf 83:89–97

    Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. In: ITT Rayonier, Shelton (ed) J. Appl. Polym. Sci.: Appl. Polym. Symp.;(United States). vol. 37. ITT Rayonier, Shelton

    Google Scholar 

  • Hochella MF (2008) Nanogeoscience: from origins to cutting-edge applications. Elements 4:373–379

    Article  CAS  Google Scholar 

  • Holt AP, Griffin PJ, Bocharova V, Agapov AL, Imel AE, Dadmun MD, Sangoro JR, Sokolov AP (2014) Dynamics at the polymer/nanoparticle interface in poly (2-vinylpyridine)/silica nanocomposites. Macromolecules 47:1837–1843

    Article  CAS  Google Scholar 

  • Hu K, Huang X, Gao Y, Huang X, Xiao H, McClements DJ (2015) Core–shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein–pectin nanoparticles. Food Chem 182:275–281

    Article  CAS  PubMed  Google Scholar 

  • Huang Q (2012) Nanotechnology in the food, beverage and nutraceutical industries. Sawston, Cambridge

    Google Scholar 

  • Ibarguren C, Naranjo PM, Stötzel C, Audisio MC, Sham EL, Farfán Torres EM, Müller FA (2014) Adsorption of nisin on raw montmorillonite. Appl Clay Sci 90:88–95

    Article  CAS  Google Scholar 

  • Imran M, Revol-Junelles A-M, Paris C, Guedon E, Linder M, Desobry S (2015) Liposomal nanodelivery systems using soy and marine lecithin to encapsulate food biopreservative nisin. LWT – Food Sci Technol 62:341–349

    Article  CAS  Google Scholar 

  • Jain A, Shivendu R, Nandita D, Chidambaram R (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci. doi:10.1080/10408398.2016.1160363

    Google Scholar 

  • Jo Y-J, Chun J-Y, Kwon Y-J, Min S-G, Hong G-P, Choi M-J (2015) Physical and antimicrobial properties of trans-cinnamaldehyde nanoemulsions in water melon juice. LWT – Food Sci Technol 60:444–451

    Article  CAS  Google Scholar 

  • Joye IJ, McClements DJ (2014) Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Curr Opin Colloid Interface Sci 19:417–427

    Article  CAS  Google Scholar 

  • Kasemwong K, Itthisoponkul T (2013) Encapsulation of flavor compounds as helical inclusion complexes of starch. Adv Appl Nanotechnol Agric Am Chem Soc 1:235–245

    Google Scholar 

  • Kauffman DR, Star A (2008) Carbon nanotube gas and vapor sensors. Angew Chem Int Ed 47:6550–6570

    Article  CAS  Google Scholar 

  • Kavoosi G, Dadfar SMM, Dadfar SMA, Ahmadi F, Niakosari M (2014) Investigation of gelatin/multi‐walled carbon nanotube nanocomposite films as packaging materials. Food Sci Nutr 2:65–73

    Article  CAS  PubMed  Google Scholar 

  • Kayaci F, Uyar T (2012) Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem 133:641–649

    Article  CAS  Google Scholar 

  • Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014a) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci Nutr 54:163–174

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Salmieri S, Fraschini C, Bouchard J, Riedl B, Lacroix M (2014b) Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent. ACS Appl Mater Interfaces 6:15232–15242

    CAS  PubMed  Google Scholar 

  • Kim B, Kim D, Cho D, Cho S (2003) Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere 52:277–281

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J-H, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang C-Y, Kim Y-K, Lee Y-S, Jeong DH, Cho M-H (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101

    Article  CAS  Google Scholar 

  • Kobayashi I, Nakajima M, Chun K, Kikuchi Y, Fujita H (2002) Silicon array elongated through-holes for monodisperse emulsion droplets. Am Inst Chem Eng AIChE J 48:1639

    Article  CAS  Google Scholar 

  • Koelmans A, Diepens N, Velzeboer I, Besseling E, Quik J, van de Meent D (2015) Guidance for the prognostic risk assessment of nanomaterials in aquatic ecosystems. Sci Total Environ 535:141–149

    Article  CAS  PubMed  Google Scholar 

  • Landry KS, Chang Y, McClements DJ, McLandsborough L (2014) Effectiveness of a novel spontaneous carvacrol nanoemulsion against Salmonella enterica Enteritidis and Escherichia coli O157:H7 on contaminated mung bean and alfalfa seeds. Int J Food Microbiol 187:15–21

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Chen L, Huang L, Cao S, Luo X, Liu K (2015) Novel antimicrobial chitosan–cellulose composite films bioconjugated with silver nanoparticles. Ind Crop Prod 70:395–403

    Article  CAS  Google Scholar 

  • Lindsay D, Saarela M (2011) Maximising the functional benefits of plant foods. Funct Foods Concepts Prod 1:337–357

    Google Scholar 

  • Livney YD (2015) Nanostructured delivery systems in food: latest developments and potential future directions. Curr Opin Food Sci 3:125–135

    Article  Google Scholar 

  • Lockhart HE (1997) A paradigm for packaging. Packag Technol Sci 10:237–252

    Article  Google Scholar 

  • Long Q, Li H, Zhang Y, Yao S (2015) Upconversion nanoparticle-based fluorescence resonance energy transfer assay for organophosphorus pesticides. Biosens Bioelectron 68:168–174

    Article  CAS  PubMed  Google Scholar 

  • Loveday SM, Rao M, Singh H (2011) Food protein nanoparticles: formation, properties and applications. Food Mater Sci Eng 1:263–294

    Google Scholar 

  • MacKintosh F (1998) Theoretical models of viscoelasticity of actin solutions and the actin cortex. Biol Bull 194:351–353

    Article  CAS  PubMed  Google Scholar 

  • Maddineni SB, Badal KM, Shivendu R, Nandita D (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5:26727–26733. doi:10.1039/C5RA03117F

    Article  CAS  Google Scholar 

  • Madureira AR, Pereira A, Castro PM, Pintado M (2015) Production of antimicrobial chitosan nanoparticles against food pathogens. J Food Eng 167:210–216

    Article  CAS  Google Scholar 

  • Makwana S, Choudhary R, Dogra N, Kohli P, Haddock J (2014) Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material. LWT-Food Sci Technol 57:470–476

    Article  CAS  Google Scholar 

  • Marques HMC (2010) A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J 25:313–326

    Article  CAS  Google Scholar 

  • Mascheroni E, Fuenmayor CA, Cosio MS, Di Silvestro G, Piergiovanni L, Mannino S, Schiraldi A (2013) Encapsulation of volatiles in nanofibrous polysaccharide membranes for humidity-triggered release. Carbohydr Polym 98:17–25

    Article  CAS  PubMed  Google Scholar 

  • Maswal M, Dar AA (2014) Formulation challenges in encapsulation and delivery of citral for improved food quality. Food Hydrocoll 37:182–195

    Article  CAS  Google Scholar 

  • Matalanis A, Jones OG, McClements DJ (2011) Structured biopolymer-based delivery systems for encapsulation, protection, and release of lipophilic compounds. Food Hydrocoll 25:1865–1880

    Article  CAS  Google Scholar 

  • McClements DJ (2015) Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems. Adv Colloid Interf Sci 219:27–53

    Article  CAS  Google Scholar 

  • McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49:577–606

    Article  CAS  PubMed  Google Scholar 

  • Mehri M, Sabaghi V, Bagherzadeh-Kasmani F (2015) Mentha piperita (peppermint) in growing Japanese quails’ diet: serum biochemistry, meat quality, humoral immunity. Anim Feed Sci Technol 206:57–66

    Article  CAS  Google Scholar 

  • Meira SMM, Zehetmeyer G, Jardim AI, Scheibel JM, de Oliveira RVB, Brandelli A (2014) Polypropylene/montmorillonite nanocomposites containing nisin as antimicrobial food packaging. Food Bioprocess Technol 7:3349–3357

    Article  CAS  Google Scholar 

  • Meira SMM, Jardim AI, Brandelli A (2015) Adsorption of nisin and pediocin on nanoclays. Food Chem 188:161–169

    Article  CAS  PubMed  Google Scholar 

  • Mills A, Doyle G, Peiro AM, Durrant J (2006) Demonstration of a novel, flexible, photocatalytic oxygen-scavenging polymer film. J Photochem Photobiol A Chem 177:328–331

    Article  CAS  Google Scholar 

  • Mirhoseini F, Salabat A (2015) Antibacterial activity based poly (methyl methacrylate) supported TiO2 photocatalyst film nanocomposite

    Google Scholar 

  • Mishra UK (2012) Application of nanotechnology in food and dairy processing: an overview. Pak J Food Sci 22:23–31

    Google Scholar 

  • Mozafari M, Mortazavi S (2005) Nanoliposomes: from fundamentals to recent developments. Trafford Pub. Ltd, Oxford

    Google Scholar 

  • Nakata T (2015) Oxygen scavenger composition, and oxygen scavenger package using the same, and method for oxygen scavenging. Google Patents

    Google Scholar 

  • Nasr N (2015) Applications of nanotechnology in food microbiology. Int J Curr Microbiol Appl Sci 4:846–853

    Google Scholar 

  • Nayak D, Ashe S, Rauta PR, Kumari M, Nayak B (2016) Bark extract mediated green synthesis of silver nanoparticles: evaluation of antimicrobial activity and antiproliferative response against osteosarcoma. Mater Sci Eng C 58:44–52

    Article  CAS  Google Scholar 

  • Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:39–47

    Article  CAS  Google Scholar 

  • Neves MA, Hashemi J, Prentice C (2015) Development of novel bioactives delivery systems by micro/nanotechnology. Curr Opin Food Sci 1:7–12

    Article  Google Scholar 

  • Nieddu M, Rassu G, Boatto G, Bosi P, Trevisi P, Giunchedi P, Carta A, Gavini E (2014) Improvement of thymol properties by complexation with cyclodextrins: in vitro and in vivo studies. Carbohydr Polym 102:393–399

    Article  CAS  PubMed  Google Scholar 

  • Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O (2014) Nanoemulsion-based delivery systems to improve functionality of lipophilic components. Front Nutr 1:24–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oksel C, Ma CY, Wang XZ (2015) Structure-activity relationship models for hazard assessment and risk management of engineered nanomaterials. Proc Eng 102:1500–1510

    Article  CAS  Google Scholar 

  • Onwulata C (2012) Encapsulation of new active ingredients*. Ann Rev Food Sci Technol 3:183–202

    Article  CAS  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2014) Agricultural nanotechnologies: what are the current possibilities? Nano Today

    Google Scholar 

  • Park J, Lim JH, Jin HJ, Namgung S, Lee SH, Park TH, Hong S (2012) A bioelectronic sensor based on canine olfactory nanovesicle–carbon nanotube hybrid structures for the fast assessment of food quality. Analyst 137:3249–3254

    Article  CAS  PubMed  Google Scholar 

  • Parliament E, Union t. C. o. t. E (2006) Regulation (EC) no. 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the registration, evaluation, authorization and restriction of chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) no. 793/93 and Commission Regulation (EC) no. 1488/94, as well as Council Directive 76/769/EEC and commission Directives 91/155/EEC, 93/67/EEC, 93/105/CE and 2000/21/EC. Off J Eur Union 396

    Google Scholar 

  • Patra S, Basak P, Tibarewala DN (2016) Synthesis of gelatin nano/submicron particles by binary nonsolvent aided coacervation (BNAC) method. Mater Sci Eng C 59:310–318

    Article  CAS  Google Scholar 

  • Peng N, Zhang Q, Chow CL, Tan OK, Marzari N (2009) Sensing mechanisms for carbon nanotube based NH3 gas detection. Nano Lett 9:1626–1630

    Article  CAS  PubMed  Google Scholar 

  • Peng S, Zou L, Liu W, Gan L, Liu W, Liang R, Liu C, Niu J, Cao Y, Liu Z (2015) Storage stability and antibacterial activity of eugenol nanoliposomes prepared by an ethanol injection–dynamic high-pressure microfluidization method. J Food Prot 78:22–30

    Article  CAS  PubMed  Google Scholar 

  • Peres I, Rocha S, Gomes J, Morais S, Pereira MC, Coelho M (2011) Preservation of catechin antioxidant properties loaded in carbohydrate nanoparticles. Carbohydr Polym 86:147–153

    Article  CAS  Google Scholar 

  • Pinho E, Grootveld M, Soares G, Henriques M (2014) Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr Polym 101:121–135

    Article  CAS  PubMed  Google Scholar 

  • Pinto RJ, Fernandes SC, Freire CS, Sadocco P, Causio J, Neto CP, Trindade T (2012) Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles. Carbohydr Res 348:77–83

    Article  CAS  PubMed  Google Scholar 

  • Pinto RJ, Daina S, Sadocco P, Neto CP, Trindade T (2013) Antibacterial activity of nanocomposites of copper and cellulose. Biomed Res Int 2013:280512–280518

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Xu Z, Jiang X, Li Y, Wang M (2005) Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg Med Chem Lett 15:1397–1399

    Article  CAS  PubMed  Google Scholar 

  • Rajisha K, Maria H, Pothan L, Ahmad Z, Thomas S (2014) Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. Int J Biol Macromol 67:147–153

    Article  CAS  PubMed  Google Scholar 

  • Raliya R, Tarafdar J (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57

    Article  CAS  Google Scholar 

  • Raliya R, Tarafdar J, Singh S, Gautam R, Choudhary K, Maurino VG, Saharan V (2014) MgO nanoparticles biosynthesis and its effect on chlorophyll contents in the leaves of clusterbean (Cyamopsis tetragonoloba L.). Adv Sci Eng Med 6:538–545

    Article  CAS  Google Scholar 

  • Raliya R, Biswas P, Tarafdar J (2015) TiO 2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26

    Article  Google Scholar 

  • Ramos M, Fortunati E, Peltzer M, Dominici F, Jiménez A, Garrigós M d C, Kenny JM (2014) Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid) based nanocomposites: thermal and morphological properties. Polym Degrad Stab 108:158–165

    Article  CAS  Google Scholar 

  • Ranjan S, Dasgupta N, Chakraborty AR, Samuel SM, Ramalingam C, Shanker R, Kumar A (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16:1–23

    Article  Google Scholar 

  • Ranjan S, Nandita D, Sudandiradoss C, Ramalingam C, Ashutosh K (2015) A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: an insight into the mechanism of action. P Natl A Sci India B. doi:10.1007/s40011-015-0673-z

    Google Scholar 

  • Ranjan S, Nandita D, Bhavapriya R, Ganesh SA, Chidambaram R, Ashutosh K (2016) Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Env Sci Pollut Res. doi:10.1007/s11356-016-6440-8

    Google Scholar 

  • Rauscher H, Sokull-Klüttgen B, Stamm H (2012) The European Commission’s recommendation on the definition of nanomaterial makes an impact. Nanotoxicology 7:1195–1197

    Article  PubMed  Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1:72–P96

    Article  Google Scholar 

  • Raynes JK, Carver JA, Gras SL, Gerrard JA (2014) Protein nanostructures in food–should we be worried? Trends Food Sci Technol 37:42–50

    Article  CAS  Google Scholar 

  • Reineccius T, Reineccius G, Peppard T (2004) Utilization of β‐cyclodextrin for improved flavor retention in thermally processed foods. J Food Sci 69:FCT58–FCT62

    Article  CAS  Google Scholar 

  • Restuccia D, Spizzirri UG, Parisi OI, Cirillo G, Curcio M, Iemma F, Puoci F, Vinci G, Picci N (2010) New EU regulation aspects and global market of active and intelligent packaging for food industry applications. Food Control 21:1425–1435

    Article  Google Scholar 

  • Reza Mozafari M, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327

    Article  CAS  PubMed  Google Scholar 

  • Rhim J-W, Hong S-I, Park H-M, Ng PK (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  CAS  PubMed  Google Scholar 

  • Robertson GL (2012) Food packaging: principles and practice. CRC press, Boca Raton

    Google Scholar 

  • Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind Crop Prod 71:44–53

    Article  CAS  Google Scholar 

  • Rodríguez SD, von Staszewski M, Pilosof AMR (2015) Green tea polyphenols-whey proteins nanoparticles: bulk, interfacial and foaming behavior. Food Hydrocoll 50:108–115

    Article  CAS  Google Scholar 

  • Rodriguez-Amaya DB (1999) Changes in carotenoids during processing and storage of foods. Arch Latinoam Nutr 49:38S–47S

    CAS  PubMed  Google Scholar 

  • Rong A, Akkerman R, Grunow M (2011) An optimization approach for managing fresh food quality throughout the supply chain. Int J Prod Econ 131:421–429

    Article  Google Scholar 

  • Rudra JS, Dave K, Haynie DT (2006) Antimicrobial polypeptide multilayer nanocoatings. J Biomater Sci Polym Ed 17:1301–1315

    Article  CAS  PubMed  Google Scholar 

  • Sadeghnejad A, Aroujalian A, Raisi A, Fazel S (2014) Antibacterial nano silver coating on the surface of polyethylene films using corona discharge. Surf Coat Technol 245:1–8

    Article  CAS  Google Scholar 

  • Sagalowicz L, Leser ME (2010) Delivery systems for liquid food products. Curr Opin Colloid Interface Sci 15:61–72

    Article  CAS  Google Scholar 

  • Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma S, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353

    Article  CAS  PubMed  Google Scholar 

  • Salmieri S, Islam F, Khan RA, Hossain FM, Ibrahim HM, Miao C, Hamad WY, Lacroix M (2014) Antimicrobial nanocomposite films made of poly (lactic acid)-cellulose nanocrystals (PLA-CNC) in food applications: Part A—Effect of nisin release on the inactivation of listeria monocytogenes in ham. Cellulose 21:1837–1850

    Article  CAS  Google Scholar 

  • Salvia-Trujillo L, Rojas-Graü MA, Soliva-Fortuny R, Martín-Belloso O (2015) Use of antimicrobial nanoemulsions as edible coatings: impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biol Technol 105:8–16

    Article  CAS  Google Scholar 

  • Sansukcharearnpon A, Wanichwecharungruang S, Leepipatpaiboon N, Kerdcharoen T, Arayachukeat S (2010) High loading fragrance encapsulation based on a polymer-blend: preparation and release behavior. Int J Pharm 391:267–273

    Article  CAS  PubMed  Google Scholar 

  • Shah B, Davidson PM, Zhong Q (2012) Encapsulation of eugenol using maillard-type conjugates to form transparent and heat stable nanoscale dispersions. LWT-Food Sci Technol 49:139–148

    Article  CAS  Google Scholar 

  • She BX, Long JB, Deng YM, Wan XJ, Zhu KJ, Tang JN (2015) Facile preparation of Cu/TiO2 nanocomposite via photocatalysis and their antibacterial performance. In: Key engineering materials, vol. 645. pp 1314–1319. Trans Tech Publications Pvt. Ltd., ​Pfaffikon, Switzerland

    Google Scholar 

  • Shi J (2006) Functional food ingredients and nutraceuticals: processing technologies. CRC Press, Boca Raton

    Book  Google Scholar 

  • Shin SH, Kim SJ, Lee SH, Park KM, Han J (2014) Apple peel and carboxymethylcellulose‐based nanocomposite films containing different nanoclays. J Food Sci 79:E342–E353

    Article  CAS  PubMed  Google Scholar 

  • Si W, Gong J, Chanas C, Cui S, Yu H, Caballero C, Friendship R (2006) In vitro assessment of antimicrobial activity of carvacrol, thymol and cinnamaldehyde towards salmonella serotype typhimurium DT104: effects of pig diets and emulsification in hydrocolloids. J Appl Microbiol 101:1282–1291

    Article  CAS  PubMed  Google Scholar 

  • Siegel D, Tenchov B (2008) Influence of the lamellar phase unbinding energy on the relative stability of lamellar and inverted cubic phases. Biophys J 94:3987–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36:1766–1782

    Article  CAS  Google Scholar 

  • Singh H, Thompson A, Liu W, Corredig M (2012) Liposomes as food ingredients and nutraceutical delivery systems. Encapsulation Technol Deliv Syst Food Ingredients Nutraceuticals 287–318

    Google Scholar 

  • Slavutsky AM, Bertuzzi MA (2015) Formulation and characterization of nanolaminated starch based film. LWT Food Sci Technol 61:407–413

    Article  CAS  Google Scholar 

  • Smolkova B, El Yamani N, Collins AR, Gutleb AC, Dusinska M (2015) Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem Toxicol 77:64–73

    Article  CAS  PubMed  Google Scholar 

  • Song X, Pei Y, Qiao M, Ma F, Ren H, Zhao Q (2015) Preparation and characterizations of pickering emulsions stabilized by hydrophobic starch particles. Food Hydrocoll 45:256–263

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27:82–89

    Article  CAS  PubMed  Google Scholar 

  • Speranza P, Ribeiro APB, Cunha RL, Macedo JA, Macedo GA (2015) Influence of emulsion droplet size on antimicrobial activity of interesterified Amazonian oils. LWT-Food Sci Technol 60:207–212

    Article  CAS  Google Scholar 

  • Takeuchi MT, Kojima M, Luetzow M (2014) State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. Food Res Int 64:976–981

    Article  Google Scholar 

  • Tarver T (2006) Food nanotechnology. Food Technol Champaign Chic 60:22

    Google Scholar 

  • Taylor A, McClements D, Decker E (2009) Measurement and simulation of flavour release from foods. In: Designing functional foods: measuring and controlling food structure breakdown and nutrient absorption. Woodhead Publishing, Cambridge, pp 294–313

    Google Scholar 

  • Tehfe M-A, Jamois R, Cousin P, Elkoun S, Robert M (2015) In situ synthesis and characterization of silver/polymer nanocomposites by thermal cationic polymerization processes at room temperature: initiating systems based on organosilanes and starch nanocrystals. Langmuir 31:4305–4313

    Article  CAS  PubMed  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Tornuk F, Hancer M, Sagdic O, Yetim H (2015) LLDPE based food packaging incorporated with nanoclays grafted with bioactive compounds to extend shelf life of some meat products. LWT Food Sci Technol 64:540–546

    Article  CAS  Google Scholar 

  • Torres-Giner S (2011) 5 – electrospun nanofibers for food packaging applications. In: Lagarón J.-M (ed) Multifunctional and nanoreinforced polymers for food packaging. Woodhead Publishing, pp 108–125, Sawston, Cambridge

    Google Scholar 

  • Troise AD, Fogliano V (2013) Reactants encapsulation and maillard reaction. Trends Food Sci Technol 33:63–74

    Article  CAS  Google Scholar 

  • Tsakalakos T, Ovid’ko IA, Vasudevan AK (2012) Nanostructures: synthesis, functional properties and application. Springer, Netherlands

    Google Scholar 

  • Valdés MG, González ACV, Calzón JAG, Díaz-García ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1–19

    Article  CAS  Google Scholar 

  • Vanderroost M, Ragaert P, Devlieghere F, De Meulenaer B (2014) Intelligent food packaging: the next generation. Trends Food Sci Technol 39:47–62

    Article  CAS  Google Scholar 

  • Véronneau S, Roy J (2009) RFID benefits, costs, and possibilities: the economical analysis of RFID deployment in a cruise corporation global service supply chain. Int J Prod Econ 122:692–702

    Article  Google Scholar 

  • Vincent JF (2008) The composite structure of biological tissue used for food. In: Food materials science. Springer, New York, pp 11–20

    Google Scholar 

  • Viswanathan S, Radecki J (2008) Nanomaterials in electrochemical biosensors for food analysis-a review. Pol J Food Nutr Sci 58:157–164

    CAS  Google Scholar 

  • Wakai M, Almenar E (2015) Effect of the presence of montmorillonite on the solubility of whey protein isolate films in food model systems with different compositions and pH. Food Hydrocoll 43:612–621

    Article  CAS  Google Scholar 

  • Walker R, Decker EA, McClements DJ (2015) Development of food-grade nanoemulsions and emulsions for delivery of omega-3 fatty acids: opportunities and obstacles in the food industry. Food Funct 6:41–54

    Article  CAS  Google Scholar 

  • Wang RM, Wang BY, He YF, Lv WH, Wang JF (2010) Preparation of composited Nano‐TiO2 and its application on antimicrobial and self‐cleaning coatings. Polym Adv Technol 21:331–336

    Article  CAS  Google Scholar 

  • Wang M, Abbineni G, Clevenger A, Mao C, Xu S (2011) Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed Nanotechnol Biol Med 7:710–729

    Article  CAS  Google Scholar 

  • Warad H, Dutta J (2005) Nanotechnology for agriculture and food systems: a view. Microelectronics, School of Advanced Technologies, Asian Institute of Technology

    Google Scholar 

  • Weel KG, Boelrijk AE, Burger JJ, Jacobs MA, Gruppen H, Voragen AG, Smit G (2004) Effect of emulsion properties on release of esters under static headspace, in vivo, and artificial throat conditions in relation to sensory intensity. J Agric Food Chem 52:6572–6577

    Article  CAS  PubMed  Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71:R107–R116

    Article  CAS  Google Scholar 

  • Weiss J, Gaysinsky S, Davidson M, McClements J (2009) Nanostructured encapsulation systems: food antimicrobials. Global Issues Food Sci Technol 425–479

    Google Scholar 

  • Wu J-E, Lin J, Zhong Q (2014) Physical and antimicrobial characteristics of thyme oil emulsified with soluble soybean polysaccharide. Food Hydrocoll 39:144–150

    Article  CAS  Google Scholar 

  • Xiao-e L, Green ANM, Haque SA, Mills A, Durrant JR (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol A Chem 162:253–259

    Article  CAS  Google Scholar 

  • Yam KL, Lee DS (2012) Emerging food packaging technologies: principles and practice. Elsevier, Cambridge

    Book  Google Scholar 

  • Yang Y, Doudrick K, Bi X, Hristovski K, Herckes P, Westerhoff P, Kaegi R (2014) Characterization of food-grade titanium dioxide: the presence of nanosized particles. Environ Sci Technol 48:6391–6400

    Article  CAS  PubMed  Google Scholar 

  • Yoon SJ, Kim BG, Jeon IT, Wu JH, Kim YK (2012) Compositional dependence of magnetic properties in CoFe/Au nanobarcodes. Appl Phys Express 5:103003

    Article  CAS  Google Scholar 

  • Youssef AM, Abdel-Aziz MS, El-Sayed SM (2014) Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. Int J Biol Macromol 69:185–191

    Article  CAS  PubMed  Google Scholar 

  • Yu H-Y, Qin Z-Y, Sun B, Yang X-G, Yao J-M (2014) Reinforcement of transparent poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by incorporation of functionalized carbon nanotubes as a novel bionanocomposite for food packaging. Compos Sci Technol 94:96–104

    Article  CAS  Google Scholar 

  • Zhang T, Zhou P, Zhan Y, Shi X, Lin J, Du Y, Li X, Deng H (2015) Pectin/lysozyme bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. Carbohydr Polym 117:687–693

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Li Y, Deng H, Hu Y, Li B (2014) Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers. Colloids Surf B: Biointerfaces 116:432–438

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preetam Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sarkar, P., Irshaan, S., Sivapratha, S., Choudhary, R. (2016). Nanotechnology in Food Processing and Packaging. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 1. Sustainable Agriculture Reviews, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-39303-2_7

Download citation

Publish with us

Policies and ethics