Skip to main content

Nanoparticles in Water, Soils and Agriculture

  • Chapter
  • First Online:
Nanoscience in Food and Agriculture 2

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 21))

Abstract

Nanotechnology is now present in the agricultural and food sectors with nanomaterials such as nanofertilizers and nanopesticides. These nanoparticles may contaminate the environment under certain conditions. The transport, mobility and sorption and bioavailability of nanoparticles is controlled by factors such as soil texture, clay content, pH, cation exchange capacity and soil organic matter. Here we review the fate of nanoparticles in agrosystems. Phytotoxicity of nanoparticles and nanofertilizers are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Qados AMS, Moftah AE (2015) Influence of silicon and nano-silicon on germination, growth and yield of faba bean (Vicia faba L.) under salt stress conditions. doi:10.9734/AJEA/2015/14109

    Google Scholar 

  • Adams LK, Lyon DY, Alvarez PJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    Article  CAS  PubMed  Google Scholar 

  • Adhikari T (2011) Nano-particle research in soil science: micronutrients. In: Proceedings of the national symposium on ‘applications of clay science: agriculture environment and industry’, NBSS & LUP, Nagpur, 18–19 February 2011, pp 74–75

    Google Scholar 

  • Aliofkhazraei M (2016) Handbook of nanoparticles. Springer International Publishing, Cham. doi:10.1007/978-3-319-15338-4

    Book  Google Scholar 

  • Almutairi ZM, Alharbi A (2015) Effect of silver nanoparticles on seed germination of crop plants. J Adv Agric 4(1):283–288

    Google Scholar 

  • Anandaraj M, Dinesh R, Srinivasan V, Harnza S (2011) Nanotechnology in agriculture: the use of novel materials and environmental issues. Bot 59–61:22–34

    Google Scholar 

  • Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nanoscale copper in the soil–plant system – toxicity and underlying potential mechanisms. Environ Res 138:306–325, http://dx.doi.org/10.1016/j.envres.2015.02.019

    Article  CAS  PubMed  Google Scholar 

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523. doi:10.1016/j.biotechadv.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  • Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2013) Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol Biochem 60:87–94, http://dx.doi.org/10.1016/j.soilbio.2013.01.016

    Article  CAS  Google Scholar 

  • Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res. doi:10.1007/s11356-014-3509-0

    Google Scholar 

  • Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta. http://dx.doi.org/10.1016/j.talanta.2014.08.050

  • Arvidsson R, Molander S, Sandén BA, Hassellöv M (2011) Challenges in exposure modeling of nanoparticles in aquatic environments, human and ecological risk assessment. Int J 17(1):245–262. doi:10.1080/10807039.2011.538639

    CAS  Google Scholar 

  • Asadzade N, Moosavi SG, Seghatoleslam MJ (2015) Effect of low irrigation and Zn and SiO2 nano-fertilizers and conventional fertilizers on morphophysiological traits and seed yield of sunflower. Biol Forum – Int J 7(1):357–364, ISSN: 0975-1130

    CAS  Google Scholar 

  • Aslani F, Bagheri S, Julkapli NM, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of Engineered Nanomaterials on Plants Growth: an Overview. Sci World J, http://dx.doi.org/10.1155/2014/641759

  • Aubert T, Burel A, Esnault MA, Cordier S, Grasset F, Cabello-Hurtado F (2012) Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters. J Hazard Mater 219–220:111–118

    Article  PubMed  CAS  Google Scholar 

  • Bakhtiari M, Moaveni P, Sani B (2015) The effect of iron nanoparticles spraying time and concentration on wheat. Biol Forum – Int J 7(1), ISSN: 0975-1130

    Google Scholar 

  • Bansiwal AK, Rayalu SS, Labhasetwar NK, Juwarkar AA, Devotta S (2006) Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J Agric Food Chem 54:4773–4779

    Article  CAS  PubMed  Google Scholar 

  • Baruah S, Dutta J (2009) Nanotechnology applications in sensing and pollution degradation in agriculture. Env Chem Lett J 7:191–204

    Article  CAS  Google Scholar 

  • Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862

    Article  CAS  PubMed  Google Scholar 

  • Beattiew IR, Haverkamp RG (2011) Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics 3:628–632. doi:10.1039/c1mt00044f

    Article  CAS  Google Scholar 

  • Behnassi M, Shahid AS, D’Silva J (2011) Sustainable agricultural development. Springer Science Business Media, London, pp 171–184

    Book  Google Scholar 

  • Ben-Moshe T (2010) Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81:387–393

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt ES, Colman BP, Hochella MF Jr, Cardinale BJ, Nisbet RM et al (2010) An ecological perspective on nanomaterial impacts in the environment. J Environ Qual 39:1954–1965

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Mohammad F, Naika HR, Epid STT, Reddy J, Prakasham RS (2015) Nanoparticles and their impact on plants. Res J Nanosci Nanotechnol 5(2):27–43. doi:10.3923/rjnn.2015.27.43

    Article  Google Scholar 

  • Binns C (2014) Nanomagnetism: fundamentals and applications, vol 6, Frontiers of nanoscience. Elsevier Ltd., Amsterdam

    Google Scholar 

  • Bodale I, Oprisan M, Stan C, Tufescu F, Racuciu M, Creanga D, Balasoiu M (2016) Nanotechnological application based on CoFe2O4 nanoparticles and electromagnetic exposure on agrotechnical plant growth. In: Sontea V Tiginyanu I (eds) 3rd International conference on nanotechnologies and biomedical engineering, IFMBE Proceedings 55, Springer Science + Business Media Singapore, pp 153 – 156. doi:10.1007/978-981-287-736-9_37

    Google Scholar 

  • Boenigk J, Beisser D, Zimmermann S, Bock C, Jakobi J, Grabner D, Groβmann L, Rahmann S, Barcikowski S, Sures B (2014) Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure. PLoS ONE 9:e95340. doi:10.1371/journal.pone.00953

    Article  PubMed  PubMed Central  Google Scholar 

  • Bombin S, LeFebvre M, Sherwood J, Xu Y, Bao Y, Ramonell KM (2015) Developmental and peproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int J Mol Sci 16(10):24174–24193. doi:10.3390/ijms161024174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottero J-Y (2016) Environmental risks of nanotechnology: a new challenge? In: Nanosciences and nanotechnology, Lourtioz J-M et al. (eds) Springer International Publishing, Cham, pp 287 – 311. doi:10.1007/978-3-319-19360-1_13

    Google Scholar 

  • Bour A, Mouchet F, Silvestre J, Gauthier L, Pinelli E (2015) Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review. J Hazard Mater, http://dx.doi.org/10.1016/j.jhazmat.2014.10.021

  • Boxall AB, Tiede K, Chaudhry Q (2007) Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine (Lond) 2(6):919–927

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (1996) The nature and properties of soils. Prentice-Hall Inc., Upper Saddle River

    Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts. Waste Manag 30:504–520. doi:10.1016/j.wasman.2009.10.012

    Article  CAS  PubMed  Google Scholar 

  • Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381

    Article  CAS  PubMed  Google Scholar 

  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16(10):23630–23650. doi:10.3390/ijms161023630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canesi L, Ciacci C, Balbi T (2015) Interactive effects of nanoparticles with other contaminants in aquatic organisms: friend or foe? Mar Environ Res, http://dx.doi.org/10.1016/j.marenvres.2015.03.010

  • Canivet L, Dubot P, Garçon G, Denayer F-O (2015) Effects of engineered iron nanoparticles on the bryophyte, Physcomitrella patens (Hedw.) Bruch & Schimp, after foliar exposure. Ecotoxicol Environ Saf 113:499–505, http://dx.doi.org/10.1016/j.ecoenv.2014.12.035

    Article  CAS  PubMed  Google Scholar 

  • Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13(6):2443–2449

    Article  CAS  Google Scholar 

  • Castiglione MR, Giorgetti L, Cremonini R, Bottega S, Spanò C (2014) Impact of TiO2 nanoparticles on Vicia narbonensis L.: potential toxicity effects. Protoplasma 251:1471–1479

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam: Part A 25(3):241–258. doi:10.1080/02652030701744538

    Article  CAS  Google Scholar 

  • Chen H, Yada R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594. doi:10.1016/j.tifs.2011.09.004

    Article  CAS  Google Scholar 

  • Chen J, Liu X, Wang C, Yin S-S, Li X-L, Hu W-J, Simon M, Shen Z-J, Xia Q, Chu C-C, Peng X-X (2015) Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J Hazard Mater 297:173–182, http://dx.doi.org/10.1016/j.jhazmat.2015.04.077

    Article  CAS  PubMed  Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96(1–6):17–31

    Google Scholar 

  • Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17(5):326–343

    Article  CAS  PubMed  Google Scholar 

  • Collins D, Luxton T, Kumar N, Shah S, Walker VK et al (2012) Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS ONE 7(8):e42663. doi:10.1371/journal.pone.0042663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway JR, Beaulieu AL, Beaulieu NL, Mazer SJ, Keller AA (2015) Environmental stresses increase photosynthetic disruption by metal oxide nanomaterials in a soil-grown plant. ACS Nano. doi:10.1021/acsnano.5b03091

    PubMed Central  Google Scholar 

  • Corradini E, De Moura M, Mattoso L (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4(8):509–515

    Article  CAS  Google Scholar 

  • Corsi I, Cherr GN, Lenihan HS, Labille J, Hassellov M, Canesi L, Dondero F, Frenzilli G, Hristozov D, Puntes V, Torre CD, Pinsino A, Libralato G, Marcomini A, Sabbioni E, Matranga V (2014) Common strategies and technologies for the ecosafety assessment and design of nanomaterials entering the marine environment. ACS Nano 8(10):9694–9709. doi:10.1021/nn504684k

    Article  CAS  PubMed  Google Scholar 

  • Cossins D (2014) Next generation: nanoparticles augment plant functions. The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemical sensors. The scientist, news & opinion, March 16. http://www.the-scientist.com/?articles.view/articleNo/39440/title/Next-Generation–Nanoparticles-Augment-Plant-Functions/

  • Cui HX, Sun CJ, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International conference on Nanoagri, Sao Pedro, Brazil, pp 28–33

    Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT, Guyen OTN, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–1199

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta N, Shivendu R, Deepa M, Chidambaram R, Ashutosh K, Rishi S (2015) Nanotechnology in agro-food: from the field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Dasgupta N, Shivendu R, Shraddha M, Ashutosh K, Chidambaram R (2016a) Fabrication of food grade vitamin E nanoemulsion by low energy approach: characterization and its application. Int J Food Prop 19(3):700–708. doi:10.1080/10942912.2015.1042587

    Article  CAS  Google Scholar 

  • Dasgupta N, Shivendu R, Bhavapriya R, Venkatraman M, Chidambaram R, Avadhani GS, Ashutosh K (2016b) Thermal co-reduction approach to vary size of silver nanoparticle: its microbial and cellular toxicology. Environ Sci Pollut Res 23:4149–4163. doi:10.1007/s11356-015-4570-z

    Article  CAS  Google Scholar 

  • Dasgupta N, Shivendu R, Patra D, Srivastava P, Kumar A, Ramalingam C (2016c) Bovine serum albumin interacts with silver nanoparticles with a “side-on” or “end on” conformation. Chem Biol Int 253:100–111. doi:10.1016/j.cbi.2016.05.018

    Article  CAS  Google Scholar 

  • de la Rosa G, Lopez-Moreno ML, de Haro D, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85(12):2161–2174

    Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Musante C, Xing B, Newman LA, Ma X, White JC (2013) Impact of Ag nanoparticle exposure on p, p’-DDE bioaccumulation by Cucurbita pepo (zucchini) and Glycine max (soybean). Environ Sci Technol 47(2):718–725

    Article  CAS  Google Scholar 

  • De Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561. doi:10.1016/j.biotechadv.2014.10.010

    Article  PubMed  CAS  Google Scholar 

  • De Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  Google Scholar 

  • de Santiago-Martín A, Constantin B, Guesdon G, Kagambega N, Raymond S, Cloutier RG (2015) Bioavailability of engineered nanoparticles in soil systems. J Hazard Toxic Radioact Waste. doi:10.1061/(ASCE)HZ.2153-5515.0000263

    Google Scholar 

  • De Souza MP, Pilon-Smits EAH, Terry N (1999) The physiology and biochemistry of selenium volatilization by plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 171–188

    Google Scholar 

  • Delay M, Frimmel FH (2012) Nanoparticles in aquatic systems. Anal Bioanal Chem 402:583–592. doi:10.1007/s00216-011-5443-z

    Article  CAS  PubMed  Google Scholar 

  • Delay M, Schwegmann H, Frimmel FH (2015) Nanoparticles and refractory organic matter: interactions and consequences. J Environ Chem Eng Vol. 3 (Issue 4, Part B): 2997–3004. http://dx.doi.org/10.1016/j.jece.2015.02.012

    Google Scholar 

  • Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540

    Article  CAS  Google Scholar 

  • Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16(11):582–589. doi:10.1016/j.tplants.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO (2014) Can nanotechnology deliver the promised benefits without negatively impacting soil microbial life? J Basic Microbiol 2014(54):1–16. doi:10.1002/jobm.201400298

    Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012) Bioactivity and biomodification of Ag, ZnO and CuO nanoparticles with relevance to plant performance in agriculture. Ind Biotechnol 8:344–357

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2015) Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology. doi:10.1007/s10646-014-1364-x

    Google Scholar 

  • Dimpka CO, Latta ED, McLean JE et al (2013) Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 47:4734–4742

    Article  CAS  Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27. doi:10.1016/j.geoderma.2011.12.018

    Article  CAS  Google Scholar 

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci: Nanosci Nanotechnol 3(3):033002. doi:10.1088/2043-6262/3/3/033002

    Google Scholar 

  • Ditta A, Arshad M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer International Publishing, Cham, pp 55–75. doi:10.1007/978-3-319-14502-4

    Google Scholar 

  • Domokos-Szabolcsy E (2011) Biological effect and fortification possibilities of inorganic selenium forms in higher plants. PhD dissertation, Debrecen University

    Google Scholar 

  • Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–531. doi:10.1007/s10725-012-9735-x

    Article  CAS  Google Scholar 

  • Domokos-Szabolcsy E, Abdalla N, Alshaal T, Sztrik A, Márton L, El-Ramady H (2014) In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance. Int J Hortic Sci 20(3–4):119–122, ISSN 1585-0404

    Google Scholar 

  • Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doolette CL, McLaughlin MJ, Kirby JK, Navarro DA (2015) Bioavailability of silver and silver sulfide nanoparticles to lettuce (Lactuca sativa): effect of agricultural amendments on plant uptake. J Hazard Mater, http://dx.doi.org/10.1016/j.jhazmat.2015.08.012

  • Doong R, Sharma VK, Kim H (2013) Interactions of nanomaterials with emerging environmental contaminants, vol 1150, ACS symposium series. American chemical society, Washington, DC

    Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J et al (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822–828

    Article  CAS  PubMed  Google Scholar 

  • El Beyrouthya M, El Azzi D (2014) Nanotechnologies: novel solutions for sustainable agriculture. Adv Crop Sci Technol 2:e118. doi:10.4172/2329-8863.1000e118

    Article  Google Scholar 

  • El-Kereti MA, El-feky SA, Khater MS, Osman YA, El-sherbini EA (2013) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Pat Food Nutr Agric 5(3):169–181

    Article  CAS  PubMed  Google Scholar 

  • El-Ramady H (2014) Integrated nutrient management and postharvest of crops. In: Sustainable agriculture reviews, Lichtfouse E (ed) Sustainable agriculture reviews, Vol. 13, doi:10.1007/978-3-319-00915-5_8, Springer International Publishing, Cham, pp 163–274

    Google Scholar 

  • El-Ramady H, Domokos-Szabolcsy É, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fári M (2014a) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12(4):495–510. doi:10.1007/s10311-014-0476-0

    Article  CAS  Google Scholar 

  • El-Ramady HR, Abdalla NA, Alshaal TA, Elhawat N, Domokos-Szabolcsy É, Prokisch J, Sztrik A, Fári M (2014b) Nano-selenium: from in vitro to micro farm experiments. The international conference “Biogeochemical processes at air-soil-water interfaces and environmental protection” for the European society for soil conservation, Imola–Ravenna, 23–26 June 2014. doi:10.13140/2.1.2260.4481

  • El-Ramady HR, Abdalla NA, Alshaal TA, Elhawat N, Domokos-Szabolcsy É, Prokisch J, Sztrik A, Fári M (2014c) Nano-selenium: from in vitro to micro farm experiments. The international conference “biogeochemical processes at air-soil-water interfaces and environmental protection” for the European society for soil conservation, Imola–Ravenna, 23–26 June 2014. doi:10.13140/2.1.2260.4481

  • El-Ramady H, Abdalla N, Alshaal T, El-Henawy A, Faizy SE-DA, Shams MS, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Pilon‑Smits EA, Domokos-Szabolcsy É (2015a) Selenium and its role in higher plants. In: Lichtfouse E et al. (eds) Environmental chemistry for a sustainable world, vol 7. Springer science + business media B.V, pp 235–296. doi:10.1007/978-3-319-19276-5_6

    Google Scholar 

  • El-Ramady H, Domokos-Szabolcsy É, Shalaby TA, Prokisch J, and Fári M (2015b) Selenium in agriculture: water, air, soil, plants, food, animals and nanoselenium. In: Lichtfouse E (ed) Environmental chemistry for a sustainable world, vol 5. (CO2 sequestration, biofuels and depollution). Springer, Berlin, pp 153–232. doi:10.1007/978-3-319-11906-9_5

    Google Scholar 

  • El-Ramady H, Abdalla N, Taha HS, Alshaal T, El-Henawy A, Faizy SE-DA, Shams MS, Youssef SM, Shalaby T, Bayoumi Y, Elhawat N, Shehata S, Sztrik A, Prokisch J, Fári M, Domokos-Szabolcsy É, Pilon‑Smits EA, Selmar D, Haneklaus S and Schnug E (2015c) Selenium and nano-selenium in plant nutrition. Environ Chem Lett. doi:10.1007/s10311-015-0535-1

    Google Scholar 

  • El-Ramady H, Alshaal T, Abdalla N, Prokisch J, Sztrik A, Fári M, Domokos-Szabolcsy É (2016) Selenium and nano-selenium biofortified sprouts using micro-farm systems. In: Global advances in selenium research from theory to application. Bañuelos GS, Lin Z-Q, Guilherme LRG, dos Reis AR (eds) Proceedings of the 4th international conference on selenium in the environment and human health, Sao Paulo, 18–21 October 2015. CRC, Taylor & Francis Group, London, pp 189–190

    Google Scholar 

  • Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531. doi:10.1016/j.envint.2010.10.012

    Article  CAS  PubMed  Google Scholar 

  • Faisal M, Saquib Q, Alatar AA et al (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332

    Article  PubMed  CAS  Google Scholar 

  • Fajardo C, Ortiz LT, Rodriguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808. doi:10.1016/j.chemosphere.2011.11.041

    Article  CAS  PubMed  Google Scholar 

  • Fan R, Huang YC, Grusak MA, Huang CP, Sherrier DJ (2014) Effects of nano-TiO2 on the agronomically-relevant Rhizobium–legume symbiosis. Sci Total Environ 466–467:503–512. doi:10.1016/j.scitotenv.2013.07.032

    Article  PubMed  CAS  Google Scholar 

  • Fang J, Shan XQ, Wen B, Lin JM, Owens G (2009) Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Farre M, Sanchis J, Barcelo D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem 30(3):517–527

    Article  CAS  Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106

    Article  CAS  PubMed  Google Scholar 

  • Fent K (2010) Ecotoxicology of engineered nanoparticles. In: Frimmel FH, Niessner R (eds) Nanoparticles in the water cycle: properties, analysis and environmental relevance. Springer, Berlin, pp 183–206

    Chapter  Google Scholar 

  • Fernández MD, Alonso-Blázquez MN, García-Gómez C, Babin M (2014) Evaluation of zinc oxide nanoparticle toxicity in sludge products applied to agricultural soil using multispecies soil systems. Sci Total Environ 497–498:688–696, http://dx.doi.org/10.1016/j.scitotenv.2014.07.085

    Article  PubMed  CAS  Google Scholar 

  • Ferry JL, Craig P, Hexel C, Sisco P, Frey R, Pennington PL, Fulton MH, Scott IG, Decho AW, Kashiwada S, Murphy CJ, Shaw TJ (2009) Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol 4:441–444. doi:10.1038/NNANO.2009.157

    Article  CAS  PubMed  Google Scholar 

  • Foltete AS, Masfaraud JF, Bigorgne E, Nahmani J, Chaurand P, Botta C, Labille J, Rose J, Férard JF, Cotelle S (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and gentoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159:2515–2522. doi:10.1016/j.envpol.2011.06.020

    Article  CAS  PubMed  Google Scholar 

  • Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics 14(1):75–83

    Article  CAS  PubMed  Google Scholar 

  • Frimmel FH, Niessner R (2010) Nanoparticles in the water cycle properties, analysis and environmental relevance. Springer, Berlin/Heidelberg. doi:10.1007/978-3-642-10318-6

    Book  Google Scholar 

  • Fubini B, Fenoglio I, Tomatis M (2007) Physicochemical characteristics of nanoparticles that determine potential toxicity. In: Monteiro-Riviere NA, Tran CL (eds) Nanotoxicology: characterization, dosing, and health effects. Informa Healthcare, New York, pp 59–70

    Chapter  Google Scholar 

  • Gao J, Xu G, Qian H, Liu P, Zhao P, Hu Y (2013) Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176:63–70. doi:10.1016/j.envpol.2013.01.027

    Article  CAS  PubMed  Google Scholar 

  • García-Gómez C, Babin M, Obrador A, Álvarez JM, Fernández MD (2015) Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil. Environ Sci Pollut Res. doi:10.1007/s11356-015-4867-y

    Google Scholar 

  • Garner KL, Keller AA (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanopart Res 16:2503. doi:10.1007/s11051-014-2503-2

    Article  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78(18):6749–6758. doi:10.1128/AEM.00941-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler-Lee J, Brooks M, Gerfen JR, Wang Q, Fotis C, Sparer A, Ma X, Berg RH, Geisler M (2014) Reproductive toxicity and life history study of silver nanoparticle effect, uptake and transport in Arabidopsis thaliana. Nanomaterials 4:301–318. doi:10.3390/nano4020301

    Article  CAS  Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR et al (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  PubMed  Google Scholar 

  • Ghodake G, Seo YD, Lee DS (2011) Hazardous phytotoxic nature of cobalt and zinc oxide nanoparticles assessed using Allium cepa. J Hazard Mater 186:952–955

    Article  CAS  PubMed  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81(10):1253–1262. doi:10.1016/j.chemosphere.2010.09.022

    Article  CAS  PubMed  Google Scholar 

  • Gil-Díaz M, Gonzalez A, Alonso J, Lobo MC (2016) Evaluation of the stability of a nanoremediation strategy using barley plants. J Environ Manag 165:150e158, http://dx.doi.org/10.1016/j.jenvman.2015.09.032

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408. doi:10.1038/nmat3890

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Melendi P, Fernandez-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueno MC et al (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot Lond 101:187–195

    Article  CAS  Google Scholar 

  • Gorczyca A, Pociecha E, Kasprowicz M, Niemiec M (2015) Effect of nanosilver in wheat seedlings and Fusarium culmorum culture systems. Eur J Plant Pathol 142:251–261

    Article  CAS  Google Scholar 

  • Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118:165–183

    Article  CAS  PubMed  Google Scholar 

  • Grillo R, Rosa AH, Fraceto LF (2015) Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119:608–619, http://dx.doi.org/10.1016/j.chemosphere.2014.07.049

    Article  CAS  PubMed  Google Scholar 

  • Haensch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soil Sci 173:554–558. doi:10.1002/jpln.200900358

    Article  CAS  Google Scholar 

  • Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends biotechnol 30(10):499–511. d. http://dx.doi.org/10.1016/j.tibtech.2012.06.004

    Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Richard Owen MH, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314. doi:10.1007/s10646-008-0199-8

    Article  CAS  PubMed  Google Scholar 

  • Hawthorne J, De la Torre Roche R, Xing B, Newman LA, Ma X, Majumdar S, Gardea-Torresdey J, White JC (2014) Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain. Environ Sci Technol 48(22):13102–13109, dx.doi.org/10.1021/es503792f

    Article  CAS  PubMed  Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11:1408–1417. doi:10.1007/s11368-011-0415-7

    Article  CAS  Google Scholar 

  • He X, Aker WG, Leszczynski J, Hwang H-M (2014) Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems. J Food Drug Anal 22:128–146, http://dx.doi.org/10.1016/j.jfda.2014.01.011

    Article  CAS  PubMed  Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust J Crop Sci 8:612–624

    CAS  Google Scholar 

  • Holden PA, Nisbet RM, Lenihan HS, Miller RJ, Cherr GN et al (2013) Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc Chem Res 46:813–822

    Article  CAS  PubMed  Google Scholar 

  • Holden PA, Klaessig F, Turco RF, Priester J, Rico CM, Arias HA, Mortimer M, Pacpaco K, Gardea-Torresdey JL (2014a) Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant? Environ sci technol 48(18):10541–10551. doi:10.1021/es502440s

    Article  CAS  PubMed  Google Scholar 

  • Holden PA, Schimel JP, Godwin HA (2014b) Five reasons to use bacteria when assessing manufactured nanomaterial environmental hazards and fates. Curr Opin Biotechnol 27:73–78. doi:10.1016/j.copbio.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2013) Nanomaterials in agricultural production: benefits and possible threats? In: Shamim N, Sharma VK (eds) Sustainable nanotechnology and the environment: advances and achievements, vol 1124, ACS symposium series. American Chemical Society, Washington, DC, pp 73–90. doi:10.1021/bk-2013-1124.ch001

    Chapter  Google Scholar 

  • Hong J, Peralta-Videa JR, Rico CM et al (2014) Evidence of translocation and physiological impacts of foliar applied CeO2 nanoparticles on cucumber (Cucumis sativus) plants. Environ Sci Technol 48(8):4376–4385

    Article  CAS  PubMed  Google Scholar 

  • Horst AM, Neal AC, Mielke RE, Sislian PR, Suh WH et al (2010) Dispersion of TiO2 nanoparticle agglomerates by Pseudomonas aeruginosa. Appl Environ Microbiol 76:7292–7298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YH, Burghaus U, Qiao S (2014) Nanotechnology for sustainable energy, ACS symposium series 1140. American Chemical Society, Washington DC, United States

    Google Scholar 

  • Hull MS, Bowman DM (2014) Nanotechnology environmental health and safety risks, regulation and management, 2nd edn. William Andrew Inc/Elsevier Inc, New York

    Google Scholar 

  • Husen A, Siddiqi KS (2014) Phytosynthesis of nanoparticles: concept, controversy and application. Nano Res Lett 9:229

    Article  CAS  Google Scholar 

  • Jain A, Shivendu R, Nandita D, Chidambaram R (2016) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci. doi:10.1080/10408398.2016.1160363

    Google Scholar 

  • Jafar G, Hamzeh G (2013) Ecotoxicity of nanomaterials in soil. Ann Biol Res 4(1):86–92

    Google Scholar 

  • Jain R, Dominic D, Jordan N, Rene ER, Weiss S, van Hullebusch ED, Hübner R, Lens PNL (2016) Preferential adsorption of Cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chem Eng J 284:917–925

    Article  CAS  Google Scholar 

  • Jaisi DP, Elimelech M (2009) Single-walled carbon nanotubes exhibit limited transport in soil columns. Environ Sci Technol 43:9161–9166

    Article  CAS  PubMed  Google Scholar 

  • Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S 22(3):321–361. doi:10.1515/eces-2015-0018

    Google Scholar 

  • Janmohammadi M, Sabaghnia N, Ahadnezhad A (2015) Impact of silicon dioxide nanoparticles on seedling early growth of lentil (Lens culinaris Medik) genotypes with various origins. Agric For 61(3):19–33. doi:10.17707/AgricultForest.61.3.02

    Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    Article  CAS  Google Scholar 

  • Johnson CA, Freyer G, Fabisch M, Caraballo MA, Ksel K, Hochella MF (2014) Observations and assessment of iron oxide and green rust nanoparticles in metal-polluted mine drainage within a steep redox gradient. Environ Chem 11(4):377

    Article  CAS  Google Scholar 

  • Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279

    Article  CAS  Google Scholar 

  • Johnston H, Pojana G, Zuin S, Jacobsen NR, Moeller P, Loft S, Semmler-Behnke M, McGuiness C, Balharry D, Marcomini A, Wallin H, Kreyling W, Donaldson K, Tran L, Stone V (2013) Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol 43(1):1–20. doi:10.3109/10408444.2012.738187

    Article  CAS  PubMed  Google Scholar 

  • Joo SH, Cheng IF (2006) Nanotechnology for environmental remediation, Modern inorganic chemistry. Springer, New York

    Google Scholar 

  • Jorio A (2016) Bioengineering applications of carbon nanostructures. Nanomedicine and nanotoxicology series. Zucolotto V (ed) Springer international publishing, Cham, doi:10.1007/978-3-319-25907-9

    Google Scholar 

  • Jośko I, Oleszczuk P (2013) Influence of soil type and environmental conditions on the ZnO, TiO2 and Ni nanoparticles phytotoxicity. Chemosphere 92:91–99

    Article  PubMed  CAS  Google Scholar 

  • Jośko I, Oleszczuk P, Futa B (2014) The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232–234:528–537, http://dx.doi.org/10.1016/j.geoderma.2014.06.012

    Article  CAS  Google Scholar 

  • Judy JD, Bertsch PM (2014) Bioavailability, toxicity, and fate of manufactured nanomaterials in terrestrial ecosystems. In: Sparks D (ed) Adv Agron, Vol. 123, pp:1–64. Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-420225-2.00001-7

  • Judy JD, McNear DH Jr, Chen C, Lewis RW, Tsyusko OV, Bertsch PM, Rao W, Stegemeier J, Lowry GV, McGrath SP, Durenkamp M, Unrine JM (2015a) Nanomaterials in biosolids inhibit nodulation, shift microbial community composition, and result in increased metal uptake relative to bulk/dissolved metals. Environ Sci Technol 49(14):8751–8758. doi:10.1021/acs.est.5b01208

    Article  CAS  PubMed  Google Scholar 

  • Judy JD, Kirby JK, Creamer C, McLaughlin MJ, Fiebiger C, Wright C, Cavagnaro TR, Bertsch PM (2015b) Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil. Environ Pollut 206:256–263, http://dx.doi.org/10.1016/j.envpol.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119. doi:10.1016/j.tox.2009.08.016

    Article  CAS  PubMed  Google Scholar 

  • Kahru A, Dubourguier H-C, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8:5153–5170. doi:10.3390/s8085153

    Article  CAS  PubMed Central  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4:49–55

    CAS  Google Scholar 

  • Kanerva T, Palojarvi A, Ramo K, Manninen S (2008) Changes in soil microbial community structure under elevated tropospheric O3 and CO2. Soil Biol Biochem 40:2502–2510

    Article  CAS  Google Scholar 

  • Kanneganti A, Talasila M (2014) MoO3 nanoparticles: synthesis, characterization and its hindering effect on germination of Vigna unguiculata seeds. Int. J Eng Res Appl 4(7) (Version 3):116–120. ISSN: 2248-9622

    Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1813–1831

    Article  PubMed  PubMed Central  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol, http://dx.doi.org/10.1016/j.ijbiomac.2015.02.039

  • Kaveh R, Li Y-S, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644. doi:10.1021/es402209w

    CAS  PubMed  Google Scholar 

  • Kern ME (2015) Interaction of gold nanomaterials with the edible food crop, Helianthus annuus (Common sunflower). MS (Master of science) thesis, University of Iowa. http://ir.uiowa.edu/etd/1657

  • Khot RL, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70. doi:10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  • Kim S, Kim J, Lee I (2011) Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus. Chem Ecol 27(1):49–55. doi:10.1080/02757540.2010.529074

    Article  CAS  Google Scholar 

  • Kim J-H, Oh Y, Yoon H, Hwang I, Chang Y-S (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49(2):1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Kirschling TL, Gregory KB, Minkley JEG, Lowry GV, Tilton RD (2010) Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environ Sci Technol 44(9):3474–3480

    Article  CAS  PubMed  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851. doi:10.1897/08-090.1

    Article  CAS  PubMed  Google Scholar 

  • Klaine SJ, Koelmans AA, Horne N, Carley S, Handy RD, Kapustka L, Nowack B, von der Kammer F (2012) Paradigms to assess the environmental impact of manufactured nanomaterials. Environ Toxicol Chem 31(1):3–14

    Article  CAS  PubMed  Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–302

    Article  CAS  PubMed  Google Scholar 

  • Koelmel J, Leland T, Wang H, Amarasiriwardena D, Xing B (2013) Investigation of gold nanoparticles uptake and their tissue level distribution in rice plants by laser ablation-inductively coupled-mass spectrometry. Environ Pollut 174:222–228, http://dx.doi.org/10.1016/j.envpol.2012.11.026

    Article  CAS  PubMed  Google Scholar 

  • Kohan-Baghkheirati E, Geisler-Lee J (2015) Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials 5:436–467

    Article  CAS  Google Scholar 

  • Kouhi SMM, Lahouti M, Ganjeali A, Entezari MH (2015a) Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses. Environ Sci Pollut Res Int 22(14):10733–10743. doi:10.1007/s11356-015-4306-0

    Article  CAS  Google Scholar 

  • Kouhi SMM, Lahouti M, Ganjeali A, Entezari MH (2015b) Comparative effects of ZnO nanoparticles, ZnO bulk particles, and Zn2+ on Brassica napus after long-term exposure: changes in growth, biochemical compound. Water Air Soil Pollut 226:364. doi:10.1007/s11270-015-2628-7

    Article  CAS  Google Scholar 

  • Kulkarni SK (2015) Nanotechnology: principles and practices, 3rd edn. Springer, Capital Publishing Company, Cham. doi:10.1007/978-3-319-09171-6

    Google Scholar 

  • Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190(1–3):816–822

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407(19):5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Kumari J, Kumar D, Mathur A, Naseer A, Kumar RR, Chandrasekaran PT, Chaudhuri G, Pulimi M, Raichur AM, Babu S, Chandrasekaran N, Nagarajan R, Mukherjee A (2014) Cytotoxicity of TiO2 nanoparticles towards fresh water sediment microorganisms at low exposure concentrations. Environ Res 135:333–345. doi:10.1016/j.envres.2014.09.025

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016) In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. In: de Voogt P (ed) Reviews of environmental contamination and toxicology, vol 236. Springer International Publishing, Cham, pp 1–115. doi:10.1007/978-3-319-20013-2_1

    Google Scholar 

  • Lal R (2007) Soil science and the carbon civilization. Soil Sci Soc Am J 71:1425–1437

    Article  CAS  Google Scholar 

  • Lal R (2008) Promise and limitations of soils to minimize climate change. J Soil Water Conserv 63:113A–118A

    Article  CAS  Google Scholar 

  • Lal R (2015) The nexus approach to managing water, soil and waste under changing climate and growing demands on natural resources. In: Kurian M, Ardakanian R (eds) Governing the nexus: water, soil and waste resources considering global change. Springer, Cham, pp 39–61. doi:10.1007/978-3-319-05747-7_3

    Google Scholar 

  • Lalau CM, Mohedano RA, Schmidt EC, Bouzon ZL, Ouriques LC, dos Santos RW, da Costa CH, Vicentini DS, Matias WG (2014) Toxicological effects of copper oxide nanoparticles on the growth rate, photosynthetic pigment content, and cell morphology of the duckweed Landoltia punctate. Protoplasma. doi:10.1007/s00709-014-0671-7

    PubMed  Google Scholar 

  • Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A, Brisset F, Carriere M (2012) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum): influence of diameter and crystal phase. Sci Total Environ 431:197–208

    Article  CAS  PubMed  Google Scholar 

  • Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014) Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264:98–106. doi:10.1016/j.jhazmat.2013.10.053

    Article  CAS  PubMed  Google Scholar 

  • Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3:159–171

    Article  CAS  Google Scholar 

  • Lee SH, Richards RJ (2004) Montserrat volcanic ash induces lymph node granuloma and delayed lung inflammation. Toxicology 195:155–165

    Article  CAS  PubMed  Google Scholar 

  • Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, Hao H, Xiaoqing L, Fashui H (2008) Antioxidant stress is promoted by nanoanatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res 121:69–79

    Article  PubMed  CAS  Google Scholar 

  • Lenz M, Kolvenbach B, Gygax B, Moes S, Corvini PFX (2011) Shedding light on selenium biomineralization: proteins associated with bionanominerals. Appl Environ Microbiol 77(13):4676–4680. doi:10.1128/AEM.01713-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerner RN, Lu Q, Zeng H, Liu Y (2012) The effects of biofilms on the transport of stabilized zerovalent iron nanoparticles in saturated porous media. Water Res 46:975–985

    Article  CAS  PubMed  Google Scholar 

  • Li B, Tao G, Xie Y, Cai X (2012) Physiological effects under the condition of spraying nano- SiO2 onto the Indocalamus barbatus McClure leaves. J Nanjing For Univ (Natural Science Edition) 36:161–164

    Google Scholar 

  • Li K-E, Chang Z-Y, Shen C-X, Yao N (2015) Toxicity of nanomaterials to plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer International Publishing, Cham, pp 101–123. doi:10.1007/978-3-319-14502-6

    Google Scholar 

  • Li S, Ma H, Wallis LK, Etterson MA, Riley B, Hoff DJ, Diamond SA (2016) Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles. Sci Total Environ 542:324–333, http://dx.doi.org/10.1016/j.scitotenv.2015.09.141

    Article  CAS  PubMed  Google Scholar 

  • Libralato G, Costa Devoti A, Zanella M, Sabbioni E, Mičetić I, Manodori L, Pigozzo A, Manenti S, Groppi F, Ghirardini AV (2015) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol Environ Saf, http://dx.doi.org/10.1016/j.ecoenv.2015.07.024

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1–13. doi:10.2134/jeq2009.0423

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686–5691

    CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139, http://dx.doi.org/10.1016/j.scitotenv.2015.01.104

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water soluble pesticide. Mat Res Bull 41:2268–2275

    Article  CAS  Google Scholar 

  • Liu W, Tian S, Zhao X, Xie W, Gong Y, Zhao D (2015a) Application of stabilized nanoparticles for in situ remediation of metal-contaminated soil and groundwater: a critical review. Curr Pollut Rep 1:280–291. doi:10.1007/s40726-015-0017-x

    Article  Google Scholar 

  • Liu X, Wang F, Shi Z, Tong R, Shi X (2015b) Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants. J Nanopart Res 17:175. doi:10.1007/s11051-015-2989-2

    Article  CAS  Google Scholar 

  • Loeffler J (2005) Nanomaterial roadmap 2015, overview on promising nanomaterials for industrial applications. Steinbeis-Europa-Zentrum, Karlsruhe

    Google Scholar 

  • Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010) X-ray Absorption Spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58(6):3689–3693. doi:10.1021/Jf904472e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6893–6899. doi:10.1021/es300839e

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Kuang L, HeX BW, Ding Y, Zhang Z, Zhao Y, Chai Z (2010a) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010b) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles: a review. Environ Pollut 172:76–85, http://dx.doi.org/10.1016/j.envpol.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Levard C, Judy JD, Unrine JM, Durenkamp M, Martin B, Jefferson B, Lowry GV (2014) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48(1):104–112

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zhang P, Zhang Z, He X, Li Y, Zhang J, Zheng L, Chu S, Yang K, Zhao Y Chai Z (2015) Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. Nanotoxicology, pp:1–9, ISSN: 1743-5390

    Google Scholar 

  • Maddineni SB, Badal KM, Shivendu R, Nandita D (2015) Diastase assisted green synthesis of size-controllable gold nanoparticles. RSC Adv 5:26727–26733. doi:10.1039/C5RA03117F

    Article  CAS  Google Scholar 

  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M (2014) Mechanisms of genotoxicity: a review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology 8(3):233–278. doi:10.3109/17435390.2013.773464

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Peralta-Videa JR, Bandyopadhyay S, Castillo-Michel H, Hernandez-Viezcas J-A, Sahi S, Gardea-Torresdey JL (2014) Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater 278:279–287

    Article  CAS  PubMed  Google Scholar 

  • Mallevre F, Fernandes TF, Aspray TJ (2014) Silver, zinc oxide and titanium dioxide nanoparticle ecotoxicity to bioluminescent Pseudomonas putida in laboratory medium and artificial wastewater. Environ Pollut 195:218–225, http://dx.doi.org/10.1016/j.envpol.2014.09.002

    Article  CAS  PubMed  Google Scholar 

  • Manikandan A, Subramanian KS (2014) Fabrication and characterisation of nanoporous zeolite based N fertilizer. Afr J Agric Res 9:276–284

    Article  CAS  Google Scholar 

  • Martínez-Fernández D, Barroso D, Komárek M (2015) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res. doi:10.1007/s11356-015-5423-5

    Google Scholar 

  • Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC (2015) Strategic role of nanotechnology in fertilizers: potential and limitations. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 25–67. doi:10.1007/978-3-319-14024-7_2

    Google Scholar 

  • Maurer-Jones MA, Mousavi MPS, Chen LD, Bühlmann P, Haynes CL (2013) Characterization of silver ion dissolution from silver nanoparticles using fluorous-phase ion-selective electrodes and assessment of resultant toxicity to Shewanella oneidensis. Chem Sci 4:2564–2572. doi:10.1039/C3SC50320H

    Article  CAS  Google Scholar 

  • Maurice PA, Hochella MF (2008) Nanoscale particles and processes: a new dimension in soil science. Adv Agron 100:123–138

    Article  CAS  Google Scholar 

  • Menard A, Drobne D, Jemec A (2011) Ecotoxicity of nanosized TiO2: review of in vivo data. Environ Pollut 159:677–684. doi:10.1016/j.envpol.2010.11.027

    Article  CAS  PubMed  Google Scholar 

  • Mohanraj J (2013) Effect of nano-zeolite on nitrogen dynamics and green house gas emission in rice soil eco system. M. Tech. (Ag.) Thesis, TNAU, Coimbatore, India

    Google Scholar 

  • Mohmood I, Lopes CB, Lopes I, Ahmad I, Duarte AC, Pereira E (2013) Nanoscale materials and their use in water contaminants removal—a review. Environ Sci Pollut Res 20:1239–1260. doi:10.1007/s11356-012-1415-x

    Article  CAS  Google Scholar 

  • Mondal AM, Mondal S, Samanta S, Mallick S (2011) Synthesis of ecofriendly silver nanoparticle from plant latex used as an important taxonomic tool for phylogenetic interrelationship. Adv Biores 2(1):122–133, ISSN 0976-4585

    CAS  Google Scholar 

  • Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C (2015) Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol Fertil Soils. doi:10.1007/s00374-015-1073-5

    Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976. doi:10.1016/j.envint.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419

    Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. doi:10.1021/es7029637

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138. doi:10.1039/c3mt00064h

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnology. Sci Appl 7:63–71

    CAS  Google Scholar 

  • Mura S, Seddaiu G, Bacchini F, Roggero PP, Greppi GF (2013) Advances of nanotechnology in agro-environmental studies. Ital J Agron 8:127–140

    Google Scholar 

  • Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27:510–517

    Article  CAS  PubMed  Google Scholar 

  • Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229–2232

    Google Scholar 

  • Nagaonkar D, Shende S, Rai M (2015) Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa. Biotechnol Prog 31(2):557–565. doi:10.1002/btpr.2040

    Article  CAS  PubMed  Google Scholar 

  • Nair PMG, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular level changes. Environ Sci Pollut Res. doi:10.1007/s11356-014-3210-3

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicolgy 17:372–386

    Article  CAS  Google Scholar 

  • Ngô C, Van de Voorde MH (2014) Nanotechnologies in agriculture and food. In: Ngô C, Van de Voorde MH (eds) Nanotechnology in a nutshell. Springer, New York, pp 233–247

    Chapter  Google Scholar 

  • Nogueira V, Lopes I, Rocha-Santos T, Santos AL, Rasteiro GM, Antunes F, Gonçalves F, Soares AMVM, Cunha A, Almeida A, Gomes NNCM, Pereira R (2012) Impact of organic and inorganic nanomaterials in the soil microbial community structure. Sci Total Environ 424:344–350. doi:10.1016/j.scitotenv.2012.02.041

    Article  CAS  PubMed  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22. doi:10.1016/j.envpol.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J et al (2012) Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem 31:50–59

    Article  CAS  PubMed  Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42. doi:10.3923/jm.2014.34.42

    Article  CAS  Google Scholar 

  • Oukarroum A, Barhoumi L, Samadani M, Dewez D (2015) Toxic effects of nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L. Biomed Res Int, Article ID 501326, http://dx.doi.org/10.1155/2015/501326

  • Pakrashi S, Jain N, Dalai S et al (2014) In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS ONE 9(2):e87789

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan B, Xing B (2010) Manufactured nanoparticles and their sorption of organic chemicals. Adv Agron 108:137–181

    Article  CAS  Google Scholar 

  • Pan B, Xing B (2012) Applications and implications of manufactured nanoparticles in soils: a review. Eur J Soil Sci. doi:10.1111/j.1365-2389.2012.01475.x

    Google Scholar 

  • Pardha-Saradhi P, Yamal G, Peddisetty T, Sharmila P, Singh J, Nagarajan R, Rao KS (2014) Plants fabricate Fe-nanocomplexes at root surface to counter and phytostabilize excess ionic Fe. Biometals 27(1):97–114. doi:10.1007/s10534-013-9690-7

    Article  CAS  PubMed  Google Scholar 

  • Patil SS, Shedbalkar UU, Truskewycz A, Chopade BA, Ball AS (2016) Nanoparticles for environmental clean-up: a review of potential risks and emerging solutions. Environ Technol Innov 5:10–21

    Article  Google Scholar 

  • Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA (2013) The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ Sci Pollut Res 20(2):1041–1049. doi:10.1007/s11356-012-1196-2

    Article  CAS  Google Scholar 

  • Peng C, Duan D, Xu C, Chen Y, Sun L, Zhang H, Yuan X, Zheng L, Yang Y, Yang J, Zhen X, Chen Y, Shi J (2015a) Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants. Environ Pollut 197:99–107, http://dx.doi.org/10.1016/j.envpol.2014.12.008

    Article  CAS  PubMed  Google Scholar 

  • Peng C, Zhang H, Fang H, Xu C, Huang H, Wang Y, Sun L, Yuan X, Chen Y, Shi J (2015b) Natural organic matter‐induced alleviation of the phytotoxicity to rice (Oryza sativa L.) caused by CuO nanoparticles. Environ Toxicol Chem 34(9):1996–2003. doi:10.1002/etc.3016

    Article  CAS  PubMed  Google Scholar 

  • Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosad G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15. doi:10.1016/j.jhazmat.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  • Perreault F, Popovic R, Dewez D (2014) Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut 185:219–227. doi:10.1016/j.envpol.2013.10.027

    Article  CAS  PubMed  Google Scholar 

  • Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48(16):8946–8962. doi:10.1021/es502342r

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332. doi:10.1016/j.scitotenv.2013.02.059

    Article  PubMed  CAS  Google Scholar 

  • Pradeep TA (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478. doi:10.1016/j.tsf.2009.03.195

    Article  CAS  Google Scholar 

  • Prakash M, Nair G, Chung M (2014) Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana. Environ Sci Pollut Res 21:8858–8869

    Article  CAS  Google Scholar 

  • Prasad R, Bagde US, Varma A (2012a) Intellectual property rights and agricultural biotechnology: an overview. Afr J Biotechnol 11(73):13746–13752

    Article  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012b) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713. doi:10.5897/AJBX2013.13554

    Article  CAS  Google Scholar 

  • Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC et al (2012) Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proc Natl Acad Sci U S A 109:E2451–E2456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabbani MM, Ahmed I, Park S-J (2016) Application of nanotechnology to remediate contaminated soils. In: Hasegawa H, Rahman Mofizur IM, Azizur Rahman M (eds) Environmental remediation technologies for metal-contaminated soils. Springer, Tokyo, pp 219–229. doi:10.1007/978-4-431-55759-3_10

    Chapter  Google Scholar 

  • Rai M, Duran N (2011) Metal nanoparticles in microbiology. Springer, Berlin/Heidelberg. doi:10.1007/978-3-642-18312-6

    Book  Google Scholar 

  • Rai M, Ribeiro C, Mattoso L, Duran N (2015) Nanotechnologies in food and agriculture. Springer, Cham/Heidelberg/New York/Dordrecht/London. doi:10.1007/978-3-319-14024-7

    Book  Google Scholar 

  • Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.). Agric Res 2(1):48–57. doi:10.1007/s40003-012-0049-z

    Article  CAS  Google Scholar 

  • Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3:415–422

    Google Scholar 

  • Rameshaiah N, Pallavi J, Shabnam S (2015) Nanofertilizers and nanosensors – an attempt for developing smart agriculture. Int J Eng Res Gen Sci 3(1):2091–2730

    Google Scholar 

  • Ranjan S, Nandita D, Arkadyuti RC, Melvin SS, Chidambaram R, Rishi S, Ashutosh K (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16(6):2464. doi:10.1007/s11051-014-2464-5

    Article  Google Scholar 

  • Ranjan S, Nandita D, Sudandiradoss C, Ramalingam C, Ashutosh K (2015) A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: an insight into the mechanism of action. Proc Natl Acad Sci, India Sect B Biol Sci. doi:10.1007/s40011-015-0673-z

    Google Scholar 

  • Ranjan S, Nandita D, Bhavapriya R, Ganesh SA, Chidambaram R, Ashutosh K (2016) Microwave-irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Env Sci Pollut Res. doi:10.1007/s11356-016-6440-8

    Google Scholar 

  • Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol App Sci 3:467–473

    CAS  Google Scholar 

  • Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments—a perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    Article  CAS  PubMed  Google Scholar 

  • Remedios C, Rosario F, Bastos V (2012) Environmental nanoparticles interactions with plants: morphological, physiological, and genotoxic aspects. J Bot 2012:1–8, http://dx.doi.org/10.1155/2012/751686

    Article  CAS  Google Scholar 

  • Rickerby DG (2013) Nanotechnology for more sustainable manufacturing: opportunities and risks. In: Shamim N, Sharma VK (eds) Sustainable nanotechnology and the environment: advances and achievements, vol 1124, ACS symposium. American Chemical Society, Washington, DC, pp 91–105

    Chapter  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY, Peralta-Videa JR, Gardea-Torresdey JL (2013a) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642. doi:10.1021/es401032m

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee WY, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013b) Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47:14110–14118. doi:10.1021/es4033887

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Barrios AC, Tan W, Rubenecia R, Lee SC, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res Int 14:10551–10558. doi:10.1007/s11356-015-4243-y

    Article  CAS  Google Scholar 

  • Roldugin VI, Fedotov MA, Folmanis GE, Kovalenko LV, Tananaevc IG (2015) Formation of aqueous colloidal solutions of selenium and silicon by laser ablation. Dokl Phys Chem, 463 (Part 1), 161–164. doi:10.1134/S0012501615070064

    Google Scholar 

  • Roure F (2016) Societal approach to nanoscience and nanotechnology: when technology reflects and shapes society. In: Lourtioz J-M et al (eds) Nanosciences and nanotechnology. Springer International Publishing, Cham, pp 357–404. doi:10.1007/978-3-319-19360-1_17

    Chapter  Google Scholar 

  • RS-RAE, The royal society and royal academy of engineering (2004). Nanoscience and nanotechnologies: opportunities and uncertainties. http://www.nanotec.org.uk/finalReport.htm

  • Ruffini MC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia: Int J Cytol Cytosystematics Cytogenet 62(2):161–165. doi:10.1080/00087114.2004.10589681

    Article  Google Scholar 

  • Rui Y, Zhang P, Zhang Y, Ma Y, He X, Gui X, Li Y, Zhang J, Zheng L, Chu S, Guo Z, Chai Z, Zhao Y, Zhang Z (2015) Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate. Environ Pollut 198:8–14

    Article  CAS  PubMed  Google Scholar 

  • Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360. doi:10.3109/17435390.2011.579631

    Article  CAS  PubMed  Google Scholar 

  • Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res 13:3287–3299. doi:10.1007/s11051-011-0243-0

    Article  CAS  Google Scholar 

  • Salamanca-Buentello F, Daar AS (2016) Dust of wonder, dust of doom: a landscape of nanotechnology, nanoethics, and sustainable development. In: Bagheri A et al (eds) Global bioethics: the impact of the UNESCO international bioethics committee, vol 5, Advancing global bioethics. Springer International Publishing, Cham, pp 101–123. doi:10.1007/978-3-319-22650-7_10

    Chapter  Google Scholar 

  • Sandler R, Kay WD (2006) The national nanotechnology initiative and the social good. J Law, Med Ethics 34(4):675–681

    Article  Google Scholar 

  • Savage N, Diallo M, Duncan J, Street A, Sustich R (2009) Nanotechnology applications for clean water. Elsevier Inc., William Andrew Inc, New York

    Google Scholar 

  • Schaumann GE, Philippe A, Bundschuh M, Metreveli G, Klitzke S, Rakcheev D, Grün A, Kumahor SK, Kühn M, Baumann T, Lang F, Manz W, Schulz R, Vogel H-J (2015a) Understanding the fate and biological effects of Ag- and TiO2-nanoparticles in the environment: the quest for advanced analytics and interdisciplinary concepts. Sci Total Environ 535:3–19, http://dx.doi.org/10.1016/j.scitotenv.2014.10.035

    Article  CAS  PubMed  Google Scholar 

  • Schaumann GE, Baumann T, Lang F, Metreveli G, Vogel H-J (2015b) Engineered nanoparticles in soils and waters. Sci Total Environ 535:1–2, http://dx.doi.org/10.1016/j.scitotenv.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  • Schwabe F, Schulin R, Rupper P, Rotzetter A, Stark W, Nowack B (2014) Dissolution and transformation of cerium oxide nanoparticles in plant growth media. J Nanopart Res 16:2668. doi:10.1007/s11051-014-2668-8

    Article  CAS  Google Scholar 

  • Schwabe F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR (2015a) Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – critical review. Nanotoxicology 11:1–22. doi:10.3109/17435390.2015.1048326

    Article  CAS  Google Scholar 

  • Schwabe F, Tanner S, Schulin R, Rotzetter A, Stark W, von Quadt A, Nowack B (2015b) Dissolved cerium contributes to uptake of Ce in the presence of differently sized CeO2 -nanoparticles by three crop plants. Metallomics 7:466–477

    Article  CAS  PubMed  Google Scholar 

  • Scott N, Chen H (2013) Nanoscale science and engineering for agriculture and food systems. Ind Biotechnol 9(1):17–18

    Article  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. J Sociol Food Agric 15(2):22–44, ISSN: 0798-1759

    Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Uni Timis oara ser Biol XVI(2):73–78

    Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53, http://dx.doi.org/10.2147/NSA.S39406

    Article  PubMed  PubMed Central  Google Scholar 

  • Selva Preetha P, Subramanian KS, Sharmila Rahale C (2014) Sorption characteristics of nanozeolite based slow release sulphur fertilizer. Int J Dev Res 4:225–228

    Google Scholar 

  • Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015) A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. J Nanopart Res 17:92. doi:10.1007/s11051-015-2907-7

    Article  CAS  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Shah MA, Bhat MA, Davim JP (2015) Nanotechnology applications for improvements in energy efficiency and environmental management. IGI Global, Hershey

    Book  Google Scholar 

  • Shamim N, Sharma VK (2013) Sustainable nanotechnology and the environment: advances and achievements, vol 1124, ACS symposium. American Chemical Society, Washington, DC. doi:10.1021/bk-2013-1124.ch001

    Book  Google Scholar 

  • Shapira P, Youtie J (2015) The economic contributions of nanotechnology to green and sustainable growth. In: Basiuk VA, Basiuk EV (eds) Green processes for nanotechnology. Springer International Publishing, Cham, pp 409–434. doi:10.1007/978-3-319-15461-9_15

    Google Scholar 

  • Sharma VK (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—a review. J Environ Sci Health A Tox Hazard Subst Environ Eng 44(14):1485–1495, http://dx.doi.org/10.1080/10934520903263231

    Article  CAS  PubMed  Google Scholar 

  • Sharma VK, Siskova KM, Zboril R, Gardea-Torresdey L (2014) Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interf Sci 204:15–34, http://dx.doi.org/10.1016/j.cis.2013.12.002

    Article  CAS  Google Scholar 

  • Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles – formation, fate, and toxicity in the environment. Chem Soc Rev. doi:10.1039/c5cs00236b

    Google Scholar 

  • Sharonova NL, Yapparov AK, Khisamutdinov NS, Ezhkova AM, Yapparov IA, Ezhkov VO, Degtyareva IA, Babynin EV (2015) Nanostructured water-phosphorite suspension is a new promising fertilizer. Nanotechnol Russ 10(7–8):651–661. doi:10.1134/S1995078015040187

    Article  CAS  Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93(6):906–915

    Article  CAS  PubMed  Google Scholar 

  • Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, liu Y, Liu Y (2012) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6(3):241–248. doi:10.3109/17435390.2011.570462

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X, Chen Y, Hu T (2014) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 8(2):179–188. doi:10.3109/17435390.2013.766768

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill.). Saudi J Biol Sci 21:13–17

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33(11):2429–2437. doi:10.1002/etc.2697

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Mohammad F (2015a) Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer International Publishing, Cham. doi:10.1007/978-3-319-14502-0

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Firoz M, Al-Khaishany MY (2015b) Role of nanoparticles in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer International Publishing, Cham, pp 19–32. doi:10.1007/978-3-319-14502-2

    Google Scholar 

  • Sillen WMA, Thijs S, Abbamondi GR, Janssen J, Weyens N, White JC, Vangronsveld J (2015) Effects of silver nanoparticles on soil microorganisms and maize biomass are linked in the rhizosphere. Soil Biol Biochem 91:14–22, http://dx.doi.org/10.1016/j.soilbio.2015.08.019

    Article  CAS  Google Scholar 

  • Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22:13710–13723. doi:10.1007/s11356-015-4171-x

    Article  CAS  Google Scholar 

  • Singh A, Singh NB, Hussain I, Singh H, Singh SC (2015a) Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. Int J Pharm Sci Invent 4(8):25–40, ISSN: 2319 – 6718

    Google Scholar 

  • Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015b) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol. doi:10.1007/s00253-015-6622-1

    Google Scholar 

  • Sirbu T, Maslobrod SN, Yu. A. Mirgorod, Borodina VG, Borsch NA, Ageeva LS (2016) Influence of dispersed solutions of copper, silver, bismuth and zinc oxide nanoparticles on growth and catalase activity of Penicillium Funiculosum. In: Sontea V, Tiginyanu I (eds) 3rd international conference on nanotechnologies and biomedical engineering, IFMBE Proceedings 55, Springer Science + Business Media Singapore, pp:271–274. doi:10.1007/978-981-287-736-9_66

    Google Scholar 

  • Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q (2012) Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health 11(Suppl 1):S13. doi:10.1186/1476-069X-11-S1-S13

    Article  PubMed  PubMed Central  Google Scholar 

  • Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M et al (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 81–101. doi:10.1007/978-3-319-14024-7_3

    Google Scholar 

  • Soliman AS, El-feky SA, Darwish E (2015) Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J Hortic For 7(2):36–47. doi:10.5897/JHF2014.0379

    Article  CAS  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89. doi:10.1016/j.tibtech.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  • Srilatha B (2011) Nanotechnology in agriculture. J Nanomedic Nanotechnol 2(7):1–5, http://dx.doi.org/10.4172/2157-7439.1000123

    Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay – dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479

    Article  CAS  PubMed  Google Scholar 

  • Stewart J, Hansen T, McLean JE, McManus P, Das S, Britt DW, Anderson AJ, Dimkpa CO (2015) Salts affect the interaction of ZnO or CuO nanoparticles with wheat. Environ Toxicol Chem 34:2116–2125. doi:10.1002/etc.v34.9

    Article  CAS  PubMed  Google Scholar 

  • Street A, Sustich R, Duncan J, Savage N (2014) Nanotechnology applications for clean water: solutions for improving water quality, 2nd edn. Elsevier Inc/William Andrew Inc, New York

    Google Scholar 

  • Stuart EJE, Compton RG (2015) Nanoparticles-emerging contaminants. In: Moretto LM, Kalcher K (eds) Environmental analysis by electrochemical sensors and biosensors. Springer Science + Business Media, New York, pp 855–878. doi:10.1007/978-1-4939-1301-5_8

    Google Scholar 

  • Subramanian KS, Sharmila Rahale C (2012) Ball milled nanosized zeolite loaded with zinc sulfate: a putative slow release Zn fertilizer. Int J Innov Hortic 1:33–40

    Google Scholar 

  • Subramanian KS, Sharmila Rahale C (2013) Nano-fertilizers – synthesis, characterization and application. In: Adhikari T, Subba R (eds) Nanotechnology in soil science and plant nutrition. New India Publishing Agency, New Delhi

    Google Scholar 

  • Subramanian KS, Paulraj C, Natarajan S (2008) Nanotechnological approaches in nutrient management. In: Chinnamuthu CR, Chandrasekaran B, Ramasamy C (eds) Nanotechnology applications in agriculture. TNAU technical bulletin. TNAU, Coimbatore, pp 37–42

    Google Scholar 

  • Subramanian KS, Manikandan A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Ra M et al (eds) Nanotechnologies in food and agriculture. Springer International Publishing, Cham, pp 69–80. doi:10.1007/978-3-319-14024-7_3

    Google Scholar 

  • Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Suppan S (2013) Nanomaterials in soil: our future food chain? The institute for agriculture and trade policy, Published by IATP (www.iatp.org).

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nanoscale 5:463–474

    Article  CAS  PubMed  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012a) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14:1294–1296

    Article  CAS  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012b) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:1–7

    Article  Google Scholar 

  • Takeuchi MT, Kojima M, Luetzow M (2014) State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. Food Res Int. doi:10.1016/j.foodres.2014.03.022

    Google Scholar 

  • Tandy S, Schulin R, Nowack B (2006) Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environ Sci Technol 40:2753–2758

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12(3):219–226

    Article  Google Scholar 

  • Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3(3):257–262

    Article  CAS  Google Scholar 

  • Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taranath TC, Patil BN, Santosh TU, Sharath BS (2015) Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.—a model approach. Environ Sci Pollut Res Int (11):8611–8617. doi:10.1007/s11356-014-4043-9

    Google Scholar 

  • Taylor AF, Rylott EL, Anderson CWN, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9(4):e93793. doi:10.1371/journal.pone.0093793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Theng BKG, Yuan G (2008) Nanoparticles in the soil environment. Elements 4:395–399

    Article  CAS  Google Scholar 

  • Thirunavukkarasu M (2014) Synthesis and evaluation of sulphur nano-fertilizers for groundnut. Ph.D. Thesis submitted to tamil nadu agricultural university, Coimbatore, India

    Google Scholar 

  • Thul ST, Sarangi BK (2015) Implications of nanotechnology on plant productivity and its rhizospheric environment. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences: nanoparticles and their impact on plants. Springer International Publishing, Cham, pp 37–54. doi:10.1007/978-3-319-14502-3

    Google Scholar 

  • Thul ST, Sarangi BK, Pandey RA (2013) Nanotechnology in agroecosystem: implications on plant productivity and its soil environment. Expert Opin Environ Biol 2:1. doi:10.4172/2325-9655.1000101

    Article  Google Scholar 

  • Tilston EL, Collins CD, Mitchell GR, Princivalle J, Shaw LJ (2013) Nanoscale zero valent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. Environ Pollut 173:38–46

    Article  CAS  PubMed  Google Scholar 

  • Tourinho PS, van Gestel CAM, Lofts S, Svendesen C, Soares AMVM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior and effects on soil invertebrates. Environ Toxicol Chem 31:1679–1692

    Article  CAS  PubMed  Google Scholar 

  • Towell MG, Browne LA, Paton GI, Semple KT (2011) Impact of carbon nanomaterials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] pyrene in soil. Environ Pollut 159:706–715. doi:10.1016/j.envpol.2010.11.040

    Article  CAS  PubMed  Google Scholar 

  • Van Aken B (2015) Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr Opin Biotechnol 33:206–219. doi:10.1016/j.copbio.2015.03.005

    Article  PubMed  CAS  Google Scholar 

  • von der Kammer F, Ottofuelling S, Hofmann T (2010) Assessment of the physico-chemical behavior of titanium dioxide nanoparticles in aquatic environments using multi-dimensional parameter testing. Environ Pollut 158:3472–3481. doi:10.1016/j.envpol.2010.05.007

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Chen Y (2015) Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion. Crit Rev Biotechnol. doi:10.3109/07388551.2015.1049509

    Google Scholar 

  • Wang P, Keller AA (2009) Natural and engineered nano and colloidal transport: role of zeta potential in prediction of particle deposition. Langmuir 25:6856–6862

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga microcystis aeruginosa as affected by dissolved organic matter. Environ Sci Technol 45:6032–6040

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu H, Zhang Y, Xin H (2015a) The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Environ Toxicol Chem. doi:10.1002/etc.2826

    Google Scholar 

  • Wang Y, Peng C, Fang H, Sun L, Zhang H, Feng J, Duan D, Liu T, Shi J (2015b) Mitigation of Cu(II) phytotoxicity to rice (Oryza sativa) in the presence of TiO2 and CeO2 nanoparticles combined with humic acid. Environ Toxicol Chem 34:1588–1596

    Article  CAS  PubMed  Google Scholar 

  • Watson JL, Fang T, Dimpka CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015) The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28(1):101–112. doi:10.1007/s10534-014-9806-8

    Article  CAS  PubMed  Google Scholar 

  • Wiesner MR, Bottero J-Y (2007) Environmental nanotechnology- applications and impacts of nanomaterials. McGraw-Hill, New York

    Google Scholar 

  • Wigginton NS, Haus KL, Hochella MF (2007) Aquatic environmental nanoparticles. J Environ Monit 9:1306–1316

    Article  CAS  PubMed  Google Scholar 

  • Wilson MA, Tran NH, Milev AS, Kannangara GSK, Volk H, Lu GQM (2008) Nanomaterials in soils. Geoderma 146:291–302. doi:10.1016/j.geoderma.2008.06.004

    Article  CAS  Google Scholar 

  • Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem, http://dx.doi.org/10.1016/j.soilbio.2015.03.011

  • Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles: current status and potential phytotoxic threats. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 230. Springer International Publishing, Cham, pp 83–110. doi:10.1007/978-3-319-04411-8_4

    Google Scholar 

  • Yang Y, Colman BP, Bernhardt ES, Hochella MF (2015) Importance of a nanoscience approach in the understanding of major aqueous contamination scenarios: case study from a recent coal ash spill. doi:10.1021/es505662q

    Google Scholar 

  • Yanık F, Vardar F (2015) Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut 226:296. doi:10.1007/s11270-015-2566-4

    Article  CAS  Google Scholar 

  • Yatim NM, Shaaban A, Dimin MF, Yusof F (2015) Statistical evaluation of the production of urea fertilizer-multiwalled carbon nanotubes using plackett burman experimental design. Procedia – Soc Behav Sci 195:315–323

    Article  Google Scholar 

  • Załęska-Radziwiłł M, Doskocz N (2015) DNA changes in Pseudomonas putida induced by aluminum oxide nanoparticles using RAPD analysis. Desalin Water Treat. doi:10.1080/19443994.2014.996015

    Google Scholar 

  • Zeliadt N (2010) Silver beware: antimicrobial nanoparticles in soil may harm plant life. Sci Am. http://www.scientificamerican.com/article/silver-beware-antimicrobial-nanoparticles-in-soil-may-harm-plant-life/3.4.2015

  • Zhai G, Walters KS, Peate DW, Alvarez PJJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1(2):146–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan J (2009) Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons. Environ Sci Technol 43:8616–8621

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC (2008) Stability of commercial metal oxide nanoparticles in water. Water res 42:2204–2212. doi:10.1016/j.watres.2007.11.036

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Ma Y, Zhang Z (2015) Interactions between engineered nanomaterials and plants: phytotoxicity, uptake, translocation, and biotransformation. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer International Publishing, Cham, pp 77–99. doi:10.1007/978-3-319-14502-5

    Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013a) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci: Processes Impacts 15:260–266. doi:10.1039/C2EM30610G

    CAS  Google Scholar 

  • Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Genhua N, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013b) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951, dx.doi.org/10.1021/jf404328e

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Peralta-Videa JR, Rico CM, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J Agric Food Chem 62:2752–2759. doi:10.1021/jf405476u

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Shi J, Zhang H (2015) Morphological evolution and reconstruction of silver nanoparticles in aquatic environments: the roles of natural organic matter and light irradiation. J Hazard Mater 292:61–69, http://dx.doi.org/10.1016/j.jhazmat.2015.03.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank the outstanding contribution of STDF research teams (Science and Technology Development Fund, Egypt) and MBMF/DLR (the Federal Ministry of Education and Research of the Federal Republic of Germany), (Project ID 5310) for their help. Great support from this German-Egyptian Research Fund (GERF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan El-Ramady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Belal, ES., El-Ramady, H. (2016). Nanoparticles in Water, Soils and Agriculture. In: Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanoscience in Food and Agriculture 2. Sustainable Agriculture Reviews, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-39306-3_10

Download citation

Publish with us

Policies and ethics