Skip to main content

2016 | OriginalPaper | Buchkapitel

A Neural Network with Central Pattern Generators Entrained by Sensory Feedback Controls Walking of a Bipedal Model

verfasst von : Wei Li, Nicholas S. Szczecinski, Alexander J. Hunt, Roger D. Quinn

Erschienen in: Biomimetic and Biohybrid Systems

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A neuromechanical simulation of a planar, bipedal walking robot has been developed. It is constructed as a simplified musculoskeletal system to mimic the biomechanics of the human lower body. The controller consists of a dynamic neural network with central pattern generators (CPGs) entrained by force and movement sensory feedback to generate appropriate muscle forces for walking. The CPG model is a two-level architecture, which consists of separate rhythm generator (RG) and pattern formation (PF) networks. The presented planar biped model walks stably in the sagittal plane without inertial sensors or a centralized posture controller or a “baby walker” to help overcome gravity. Its gait is similar to humans’ with a walking speed of 1.2 m/s. The model walks over small obstacles (5 % of the leg length) and up and down 5° slopes without any additional higher level control actions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Guertin, P.A.: Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front. Neurol. 3, 4–15 (2013)CrossRef Guertin, P.A.: Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front. Neurol. 3, 4–15 (2013)CrossRef
2.
Zurück zum Zitat Mackay-Lyons, M.: Central pattern generation of locomotion: a review of the evidence. Phys. Ther. 82, 69–83 (2002) Mackay-Lyons, M.: Central pattern generation of locomotion: a review of the evidence. Phys. Ther. 82, 69–83 (2002)
3.
Zurück zum Zitat Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008)CrossRef Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21, 642–653 (2008)CrossRef
4.
Zurück zum Zitat Grillner, S., Zangger, P.: On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34, 241–261 (1979)CrossRef Grillner, S., Zangger, P.: On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34, 241–261 (1979)CrossRef
5.
Zurück zum Zitat Pearson, K.G., Rossignol, S.: Fictive motor patterns in chronic spinal cats. J. Neurophysiol. 66, 1874–1887 (1991) Pearson, K.G., Rossignol, S.: Fictive motor patterns in chronic spinal cats. J. Neurophysiol. 66, 1874–1887 (1991)
6.
Zurück zum Zitat Dimitrijevic, M.R., Gerasimenko, Y., Pinter, M.M.: Evidence for a spinal central pattern generator in humans. Ann. N. Y. Acad. Sci. 860, 360–376 (1998)CrossRef Dimitrijevic, M.R., Gerasimenko, Y., Pinter, M.M.: Evidence for a spinal central pattern generator in humans. Ann. N. Y. Acad. Sci. 860, 360–376 (1998)CrossRef
7.
Zurück zum Zitat Dickinson, M.H., et al.: How animals move: an integrative view. Science 288, 100–106 (2000)CrossRef Dickinson, M.H., et al.: How animals move: an integrative view. Science 288, 100–106 (2000)CrossRef
8.
Zurück zum Zitat Pearson, K.G.: Common principles of motor control in vertebrates and invertebrates. Ann. Rev. Neurosci. 16, 265–297 (1993)CrossRef Pearson, K.G.: Common principles of motor control in vertebrates and invertebrates. Ann. Rev. Neurosci. 16, 265–297 (1993)CrossRef
9.
Zurück zum Zitat Rossignol, S., Dubuc, R., Gossard, J.P.: Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86, 89–154 (2006)CrossRef Rossignol, S., Dubuc, R., Gossard, J.P.: Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86, 89–154 (2006)CrossRef
10.
Zurück zum Zitat McCrea, D.A.: Spinal circuitry of sensorimotor control of locomotion. J. Physiol. 533, 41–50 (2001)CrossRef McCrea, D.A.: Spinal circuitry of sensorimotor control of locomotion. J. Physiol. 533, 41–50 (2001)CrossRef
11.
Zurück zum Zitat Pearson, K.G.: Generating the walking gait: role of sensory feedback. Prog. Brain Res. 143, 123–129 (2004)CrossRef Pearson, K.G.: Generating the walking gait: role of sensory feedback. Prog. Brain Res. 143, 123–129 (2004)CrossRef
12.
Zurück zum Zitat Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65, 147–159 (1991)CrossRefMATH Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol. Cybern. 65, 147–159 (1991)CrossRefMATH
13.
Zurück zum Zitat Aoi, S., Tsuchiya, K.: Locomotion control of a biped robot using nonlinear oscillators. Auton. Robots 19, 219–232 (2005)CrossRef Aoi, S., Tsuchiya, K.: Locomotion control of a biped robot using nonlinear oscillators. Auton. Robots 19, 219–232 (2005)CrossRef
14.
Zurück zum Zitat Ogihara, N., Yamazaki, N.: Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biol. Cybern. 84, 1–11 (2001)CrossRef Ogihara, N., Yamazaki, N.: Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model. Biol. Cybern. 84, 1–11 (2001)CrossRef
15.
Zurück zum Zitat Paul, C., Bellotti, M., Jezernik, S., Curt, A.: Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury. Biol. Cybern. 93, 153–170 (2005)CrossRefMATH Paul, C., Bellotti, M., Jezernik, S., Curt, A.: Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury. Biol. Cybern. 93, 153–170 (2005)CrossRefMATH
16.
Zurück zum Zitat Geyer, H., Herr, H.: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)CrossRef Geyer, H., Herr, H.: A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18(3), 263–273 (2010)CrossRef
17.
Zurück zum Zitat Van der Noot, N., Ijspeert, A.J., Ronsse, R.: Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model. In: IEEE International Conference on ICRA 2015, pp. 6267–6274 (2015) Van der Noot, N., Ijspeert, A.J., Ronsse, R.: Biped gait controller for large speed variations, combining reflexes and a central pattern generator in a neuromuscular model. In: IEEE International Conference on ICRA 2015, pp. 6267–6274 (2015)
18.
Zurück zum Zitat Morimoto, J., Endo, G., Nakanishi, J., Cheng, G.: A biologically inspired bipded locomotion strategy for humanoid robots: modulation of sinusoidal patterns by a coupled oscillator model. IEEE Trans. Robot. 24(1), 185–191 (2008)CrossRef Morimoto, J., Endo, G., Nakanishi, J., Cheng, G.: A biologically inspired bipded locomotion strategy for humanoid robots: modulation of sinusoidal patterns by a coupled oscillator model. IEEE Trans. Robot. 24(1), 185–191 (2008)CrossRef
19.
Zurück zum Zitat Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Proceedings of 2006 IEEE International Conference on ICRA 2006, pp. 1585–1590 (2006) Righetti, L., Ijspeert, A.J.: Programmable central pattern generators: an application to biped locomotion control. In: Proceedings of 2006 IEEE International Conference on ICRA 2006, pp. 1585–1590 (2006)
20.
Zurück zum Zitat Klein, T.J., Lewis, M.A.: A physical model of sensorimotor interactions during locomotion. J. Neural Eng. 9(4), 1–14 (2012)CrossRef Klein, T.J., Lewis, M.A.: A physical model of sensorimotor interactions during locomotion. J. Neural Eng. 9(4), 1–14 (2012)CrossRef
21.
Zurück zum Zitat Cofer, D.W., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulation. J. Neurosci. Methods 187(2), 280–288 (2010)CrossRef Cofer, D.W., Cymbalyuk, G., Reid, J., Zhu, Y., Heitler, W.J., Edwards, D.H.: AnimatLab: a 3D graphics environment for neuromechanical simulation. J. Neurosci. Methods 187(2), 280–288 (2010)CrossRef
22.
Zurück zum Zitat Fischer, M., Witte, H.: Legs evolved only at the end. Philos. Trans. R. Soc. A 365, 185–198 (2006)CrossRef Fischer, M., Witte, H.: Legs evolved only at the end. Philos. Trans. R. Soc. A 365, 185–198 (2006)CrossRef
23.
Zurück zum Zitat Plagenhoef, S., Evans, F.G., Abdelnour, T.: Anatomical data for analyzing human motion. Res. Q. Exerc. Sport 54, 169–178 (1983)CrossRef Plagenhoef, S., Evans, F.G., Abdelnour, T.: Anatomical data for analyzing human motion. Res. Q. Exerc. Sport 54, 169–178 (1983)CrossRef
24.
Zurück zum Zitat Zucker, R.S., Regehr, W.G.: Short-term synaptic plasticity. Annu. Rev. Physiol. 64(1), 355–405 (2002)CrossRef Zucker, R.S., Regehr, W.G.: Short-term synaptic plasticity. Annu. Rev. Physiol. 64(1), 355–405 (2002)CrossRef
25.
Zurück zum Zitat Rybak, I.A., Stecina, K., Shevtsova, N.A., Lafreniere-Roula, M., McCrea, D.A.: Modeling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J. Physiol. 577, 617–639 (2006)CrossRef Rybak, I.A., Stecina, K., Shevtsova, N.A., Lafreniere-Roula, M., McCrea, D.A.: Modeling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J. Physiol. 577, 617–639 (2006)CrossRef
26.
Zurück zum Zitat Dietz, V., Duysens, J.: Significance of load receptor input during locomotion: a review. Gait and Posture 11, 102–110 (2000)CrossRef Dietz, V., Duysens, J.: Significance of load receptor input during locomotion: a review. Gait and Posture 11, 102–110 (2000)CrossRef
27.
Zurück zum Zitat Pang, M.Y.C., Yang, J.F.: The initiation of the swing phase in human infant stepping: importance of hip position and leg load. J. Physiol. 528(2), 389–404 (2010)CrossRef Pang, M.Y.C., Yang, J.F.: The initiation of the swing phase in human infant stepping: importance of hip position and leg load. J. Physiol. 528(2), 389–404 (2010)CrossRef
28.
Zurück zum Zitat Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E.: Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8, 383–392 (1990)CrossRef Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E.: Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8, 383–392 (1990)CrossRef
Metadaten
Titel
A Neural Network with Central Pattern Generators Entrained by Sensory Feedback Controls Walking of a Bipedal Model
verfasst von
Wei Li
Nicholas S. Szczecinski
Alexander J. Hunt
Roger D. Quinn
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-42417-0_14