Skip to main content

Optical Sensing Based on Photonic Crystal Structures

  • Chapter
  • First Online:
Fiber Optic Sensors

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 21))

Abstract

Photonic crystals (PhC) are materials which present periodic variations of the dielectric constant over distances of the same order of the light wavelength . Their optical properties are highly dependent on construction details such as dielectric constants and sizes of their different constituents. It is possible to turn PhC structures into optical sensors by making some of their structural characteristics responsive to the desired mesurand . These sensors are small, compact, compatible with electronic integration in some cases, and may present some other advantages like high sensitivity and selectivity . In recent years the development of PhC sensors has experienced a substantial increase due to their performance and to the increasing demand of sensing applications such as instrumentation, healthcare, environment security, food quality and industrial control. In this paper we present an overview of PhC sensors focused on their physical working principles. It covers a description of PhC structures, their interaction with radiation , the general strategies to make them responsive and, finally, a selection of sensor proposal of a variety of mesurands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987). doi:10.1103/PhysRevLett.58.2059

    Article  Google Scholar 

  2. S. John, Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987). doi:10.1103/PhysRevLett.58.2486

    Article  Google Scholar 

  3. K. Ohtaka, Energy band of photons and low-energy photon diffraction. Phys. Rev. B 19, 5057–5067 (1979). doi:10.1103/PhysRevB.19.5057

    Article  Google Scholar 

  4. K. Ohtaka, M. Inoue, Light scattering from macroscopic spherical bodies I. Integrated density of states of transverse electromagnetic fields. Phys. Rev. B 25 (1982)

    Google Scholar 

  5. M. Inoue, K. Ohtaka, S. Yanagawa, Light scattering from macroscopic spherical bodies. II. Reflectivity of light and electromagnetic localized state in a periodic monolayer of dielectric spheres. Phys. Rev. B 25, 689–699 (1982). doi:10.1103/PhysRevB.25.689

    Article  Google Scholar 

  6. Villa A. Della, S. Enoch, G. Tayeb et al., Localized modes in photonic quasicrystals with Penrose-type lattice. Opt. Express 14, 10021 (2006). doi:10.1364/OE.14.010021

    Article  Google Scholar 

  7. K. Wang, Light wave states in two-dimensional quasiperiodic media. Phys. Rev. B—Condens. Matter Mater. Phys. 73, 1–5 (2006). doi:10.1103/PhysRevB.73.235122

    Google Scholar 

  8. S. Torquato, F.H. Stillinger, Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E: Stat., Nonlin, Soft Matter. Phys. 68, 041113 (2003). doi:10.1103/PhysRevE.68.041113

    Article  MathSciNet  Google Scholar 

  9. W. Man, M. Florescu, K. Matsuyama et al., Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast. Opt. Express 21, 19972–19981 (2013). doi:10.1364/OE.21.019972

    Article  Google Scholar 

  10. E. Hecht, A. Zajac, Optics, 2003rd edn. (Addson-Wesley, Reading, Mass, 1974)

    Google Scholar 

  11. J.N. Winn, R.D. Meade, J.D. Joannopoulos, Two-dimensional Photonic Band-gap Materials. J. Mod. Opt. 41, 257–273 (1994). doi:10.1080/09500349414550311

    Article  Google Scholar 

  12. R.D. Meade, K.D. Brommer, A.M. Rappe, J.D. Joannopoulos, Existence of a photonic band gap in two dimensions. Appl. Phys. Lett. 61, 495 (1992)

    Article  Google Scholar 

  13. S. Wong, V. Kitaev, G.A. Ozin, Colloidal crystal films: advances in universality and perfection. J. Am. Chem. Soc. 125, 15589–15598 (2003). doi:10.1021/ja0379969

    Article  Google Scholar 

  14. H. Míguez, V. Kitaev, G.A. Ozin, Band spectroscopy of colloidal photonic crystal films. Appl. Phys. Lett. 84, 1239 (2004). doi:10.1063/1.1644913

    Article  Google Scholar 

  15. A.-P. Hynninen, J.H.J. Thijssen, E.C.M. Vermolen et al., Self-assembly route for photonic crystals with a bandgap in the visible region. Nat. Mater. 6, 202–205 (2007). doi:10.1038/nmat1841

    Article  Google Scholar 

  16. C.I. Aguirre, E. Reguera, A. Stein, Tunable colors in opals and inverse opal photonic crystals. Adv. Funct. Mater. 20, 2565–2578 (2010)

    Article  Google Scholar 

  17. J.S. King, D.P. Gaillot, E. Graugnard, C.J. Summers, Conformally back-filled, non-close-packed inverse-opal photonic crystals. Adv. Mater. 18, 1063–1067 (2006)

    Article  Google Scholar 

  18. F. Meseguer, Colloidal crystals as photonic crystals. Colloids Surf. A Physicochem. Eng. Asp. 270–271, 1–7 (2005)

    Article  MathSciNet  Google Scholar 

  19. A.M.R. Pinto, M. Lopez-Amo, Photonic crystal fibers for sensing applications. J. Sens. (2012). doi:10.1155/2012/598178

    Google Scholar 

  20. Y. Zhao, X.C. Li, Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints. Sens. Actuators B Chem. 221, 406–410 (2015)

    Article  Google Scholar 

  21. N.W. Ashcroft, N. Mermin, Solid State Physics: Amazon.es: Libros en idiomas extranjeros. https://www.amazon.es/Solid-State-Physics-Neil-Ashcroft/dp/0030839939. Accessed 6 May 2016

  22. A. Andueza, M. Sáenz, R. Echeverria et al., Photonic band effects in three dimensional lattices of macroscopic-sized dielectric spheres derived from microwave transmission spectroscopy. Opt Quantum Electron 40, 1043–1051 (2009). doi:10.1007/s11082-009-9300-7

    Article  Google Scholar 

  23. W.H. Bragg, W.L. Bragg, The reflection of X-rays by crystals. Proc. R Soc. A Math. Phys. Eng. Sci. 88, 428–438 (1913)

    Article  MATH  Google Scholar 

  24. A. Andueza, R. Echeverría, P. Morales, J. Sevilla, Transmission spectra changes produced by decreasing compactness of opal-like structures. J. Appl. Phys. 105, 024910 (2009). doi:10.1063/1.3068475

    Article  Google Scholar 

  25. G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908)

    Article  MATH  Google Scholar 

  26. M. Bayer, T. Gutbrod, J.P. Reithmaier et al., Optical modes in photonic molecules. Phys. Rev. Lett. 81, 2582–2585 (1998)

    Article  Google Scholar 

  27. X. Wang, O.S. Wolfbeis, R.J. Meier, Luminescent probes and sensors for temperature. Chem. Soc. Rev. 42, 7834–7869 (2013). doi:10.1039/c3cs60102a

    Article  Google Scholar 

  28. U. Fano, Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  MATH  Google Scholar 

  29. S. Amoudache, R.P. Moiseyenko, Y. Pennec et al., Optical and acoustic sensing using Fano-like resonances in dual phononic and photonic crystal plate. J. Appl. Phys. 119, 114502 (2016). doi:10.1063/1.4944600

    Article  Google Scholar 

  30. W. Zhou, D. Zhao, Y.C. Shuai et al., Progress in 2D photonic crystal Fano resonance photonics. Prog. Quantum Electron. 38, 1–74 (2014). doi:10.1016/j.pquantelec.2014.01.001

    Article  Google Scholar 

  31. Z. Cai, N.L. Smith, J.T. Zhang, S.A. Asher, Two-dimensional photonic crystal chemical and biomolecular sensors. Anal. Chem. 87, 5013–5025 (2015). doi:10.1021/ac504679n

    Article  Google Scholar 

  32. P. Morales, A. Andueza, J. Sevilla, Effect of dielectric permittivity variation in the transmission spectra of non-compact 2D-arrays of dielectric spheres. J. Appl. Phys. 113, 084906 (2013). doi:10.1063/1.4790880

    Article  Google Scholar 

  33. A. Andueza, R. Echeverría, J. Sevilla, Evolution of the electromagnetic modes of a single layer of dielectric spheres with compactness. J. Appl. Phys. 104, 043103 (2008). doi:10.1063/1.2969659

    Article  Google Scholar 

  34. A. Andueza, R. Echeverría, P. Morales, J. Sevilla, Erratum: “Transmission spectra changes produced by decreasing compactness of opal like structures” [J. Appl. Phys. 105, 024910 (2009)]. J Appl Phys 109:019902 (2011). doi:10.1063/1.3524566

  35. P. Lalanne, C. Sauvan, J.P. Hugonin, Photon confinement in photonic crystal nanocavities. Laser Photonics Rev. 2, 514–526 (2008). doi:10.1002/lpor.200810018

    Article  Google Scholar 

  36. S. Chakravarty, A. Hosseini, X. Xu et al., Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors. Appl. Phys. Lett. 104, 191109 (2014). doi:10.1063/1.4875903

    Article  Google Scholar 

  37. Y.-N. Zhang, Y. Zhao, R.-Q. Lv, A review for optical sensors based on photonic crystal cavities. Sens. Actuators A Phys. 233, 374–389 (2015). doi:10.1016/j.sna.2015.07.025

    Article  Google Scholar 

  38. S.A. Asher, V.L. Alexeev, A.V. Goponenko et al., Photonic crystal carbohydrate sensors: low ionic strength sugar sensing. J. Am. Chem. Soc. 125, 3322–3329 (2003)

    Article  Google Scholar 

  39. M.M.W. Muscatello, L.E. Stunja, S.A. Asher, Polymerized crystalline colloidal array sensing of high glucose concentrations. Anal. Chem. 81, 4978–4986 (2009)

    Article  Google Scholar 

  40. D. Yang, P.T. Zhang, Ultrahigh-Q and low-mode-volume parabolic radius-modulated single photonic crystal slot nanobeam cavity for high-sensitivity refractive index sensing. IEEE Photonics J. 7 (2015)

    Google Scholar 

  41. C. Zhang, G.G. Cano, P.V. Braun, Linear and fast hydrogel glucose sensor materials enabled by volume resetting agents. Adv. Mater. 26, 5678–5683 (2014)

    Article  Google Scholar 

  42. S.A. Asher, J. Holtz, L. Liu, Z. Wu, Self-assembly motif for creating submicron periodic materials. Polymerized crystalline colloidal arrays. J. Am. Chem. Soc. 116, 4997–4998 (1994)

    Article  Google Scholar 

  43. A.V. Goponenko, S.A. Asher, Modeling of stimulated hydrogel volume changes in photonic crystal Pb2+ sensing materials. J. Am. Chem. Soc. 127, 10753–10759 (2005)

    Article  Google Scholar 

  44. F. Yan, S. Asher, Cation identity dependence of crown ether photonic crystal Pb2+ sensing. Anal. Bioanal. Chem. 387, 2121–2130 (2007)

    Article  Google Scholar 

  45. D. Arunbabu, A. Sannigrahi, T. Jana, Photonic crystal hydrogel material for the sensing of toxic mercury ions (Hg2+) in water. Soft Matter 7, 2592 (2011)

    Article  Google Scholar 

  46. A.C. Sharma, T. Jana, R. Kesavamoorthy et al., A general photonic crystal sensing motif: creatinine in bodily fluids. J. Am. Chem. Soc. 126, 2971–2977 (2004)

    Article  Google Scholar 

  47. K.I. MacConaghy, C.I. Geary, J.L. Kaar, M.P. Stoykovich, Photonic crystal kinase biosensor. J. Am. Chem. Soc. 136, 6896–6899 (2014)

    Article  Google Scholar 

  48. K. Lee, S.A. Asher, Photonic Crystal Chemical Sensors: pH and Ionic Strength. J. Am. Chem. Soc. 122, 9534–9537 (2000)

    Article  Google Scholar 

  49. X. Xu, A.V. Goponenko, S.A. Asher, Polymerized PolyHEMA photonic crystals: pH and ethanol sensor materials. J. Am. Chem. Soc. 130, 3113–3119 (2008)

    Article  Google Scholar 

  50. R.A. Barry, P. Wiltzius, Humidity-sensing inverse opal hydrogels. Langmuir 22, 1369–1374 (2006)

    Article  Google Scholar 

  51. H. Hu, Q.-W. Chen, K. Cheng, J. Tang, Visually readable and highly stable self-display photonic humidity sensor. J. Mater. Chem. 22, 1021–1027 (2012)

    Article  Google Scholar 

  52. C. Fenzl, S. Wilhelm, T. Hirsch, O.S. Wolfbeis, Optical sensing of the ionic strength using photonic crystals in a hydrogel matrix. ACS Appl. Mater. Interfaces 5, 173–178 (2013)

    Article  Google Scholar 

  53. K.W. Kimble, J.P. Walker, D.N. Finegold, S.A. Asher, Progress toward the development of a point-of-care photonic crystal ammonia sensor. Anal. Bioanal. Chem. 385, 678–685 (2006)

    Article  Google Scholar 

  54. A.C. Arsenault, T.J. Clark, G. von Freymann et al., From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mater. 5, 179–184 (2006). doi:10.1038/nmat1588

    Article  Google Scholar 

  55. J. Li, Y. Wu, J. Fu et al., Reversibly strain-tunable elastomeric photonic crystals. Chem. Phys. Lett. 390, 285–289 (2004)

    Article  Google Scholar 

  56. I.B. Burgess, M. Lončar, J. Aizenberg, Structural colour in colourimetric sensors and indicators. J. Mater. Chem. C 1, 6075 (2013)

    Article  Google Scholar 

  57. J.M. Jethmalani, W.T. Ford, Diffraction of visible light by ordered monodisperse silica − Poly(methyl acrylate) composite films. Chem. Mater. 8, 2138–2146 (1996)

    Article  Google Scholar 

  58. S.H. Foulger, P. Jiang, A.C. Lattam et al., Mechanochromic response of Poly(ethylene glycol) methacrylate hydrogel encapsulated crystalline colloidal arrays. Langmuir 17, 6023–6026 (2001)

    Article  Google Scholar 

  59. S.H. Foulger, P. Jiang, A. Lattam et al., Photonic crystal composites with reversible high-frequency stop band shifts. Adv. Mater. 15, 685–689 (2003)

    Article  Google Scholar 

  60. K. Hwang, D. Kwak, C. Kang et al., Electrically tunable hysteretic photonic gels for nonvolatile display pixels. Angew. Chemie. 123, 6435–6438 (2011)

    Article  Google Scholar 

  61. M. Ozaki, Y. Shimoda, M. Kasano, K. Yoshino, Electric field tuning of the stop band in a liquid-crystal-infiltrated polymer inverse opal. Adv. Mater. 14, 514–518 (2002)

    Article  Google Scholar 

  62. Y. Shimoda, M. Ozaki, K. Yoshino, Electric field tuning of a stop band in a reflection spectrum of synthetic opal infiltrated with nematic liquid crystal. Appl. Phys. Lett. 79, 3627 (2001)

    Article  Google Scholar 

  63. A.C. Arsenault, H. Míguez, V. Kitaev et al., A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink). Adv. Mater. 15, 503–507 (2003)

    Article  Google Scholar 

  64. A.C. Arsenault, D.P. Puzzo, I. Manners, G.A. Ozin, Photonic-crystal full-colour displays. Nat. Photonics 1, 468–472 (2007)

    Article  Google Scholar 

  65. D.P. Puzzo, A.C. Arsenault, I. Manners, G.A. Ozin, Electroactive inverse opal: a single material for all colors. Angew. Chemie. 121, 961–965 (2009)

    Article  Google Scholar 

  66. K. Ueno, J. Sakamoto, Y. Takeoka, M. Watanabe, Electrochromism based on structural colour changes in a polyelectrolyte gel. J. Mater. Chem. 19, 4778 (2009)

    Article  Google Scholar 

  67. Y. Saado, M. Golosovsky, D. Davidov, A. Frenkel, Tunable photonic band gap in self-assembled clusters of floating magnetic particles. Phys. Rev. B 66, 195108 (2002)

    Article  Google Scholar 

  68. S. Sacanna, A.P. Philipse, Preparation and properties of monodisperse latex spheres with controlled magnetic moment for field-induced colloidal crystallization and (dipolar) chain formation. Langmuir 22, 10209–10216 (2006)

    Article  Google Scholar 

  69. J. Ge, Y. Hu, M. Biasini et al., Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chemie. 119, 4420–4423 (2007)

    Article  Google Scholar 

  70. J. Ge, Y. Yin, Magnetically responsive colloidal photonic crystals. J. Mater. Chem. 18, 5041 (2008)

    Article  Google Scholar 

  71. C. Zhu, L. Chen, H. Xu, Z. Gu, A magnetically tunable colloidal crystal film for reflective display. Macromol. Rapid Commun. 30, 1945–1949 (2009)

    Article  Google Scholar 

  72. X. Xu, G. Friedman, K.D. Humfeld et al., Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals. Chem. Mater. 14, 1249–1256 (2002)

    Article  Google Scholar 

  73. X. Xu, S.A. Majetich, S.A. Asher, Mesoscopic Monodisperse Ferromagnetic Colloids Enable Magnetically Controlled Photonic Crystals. J. Am. Chem. Soc. 124, 13864–13868 (2002)

    Article  Google Scholar 

  74. J. Ballato, A. James, A ceramic photonic crystal temperature sensor. J. Am. Ceram. Soc. 82, 2273–2275 (2004)

    Article  Google Scholar 

  75. X. Wang, O.S. Wolfbeis, R.J. Meier, Luminescent probes and sensors for temperature. Chem. Soc. Rev. 42, 7834–7869 (2013)

    Article  Google Scholar 

  76. J.M. Weissman, H.B. Sunkara, A.S. Tse, SA. Asher thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science (80-) 274, 959–963 (1996)

    Google Scholar 

  77. J.D. Debord, L.A. Lyon, Thermoresponsive photonic crystals. J. Phys. Chem. B 104, 6327–6331 (2000)

    Article  Google Scholar 

  78. Z. Hu, X. Lu, J. Gao, Hydrogel opals. Adv. Mater. 13, 1708–1712 (2001)

    Article  Google Scholar 

  79. C.E. Reese, A.V. Mikhonin, M. Kamenjicki et al., Nanogel nanosecond photonic crystal optical switching. J. Am. Chem. Soc. 126, 1493–1496 (2004)

    Article  Google Scholar 

  80. M.C. Chiappelli, R.C. Hayward, Photonic multilayer sensors from photo-crosslinkable polymer films. Adv. Mater. 24, 6100–6104 (2012)

    Article  Google Scholar 

  81. Y. Hu, J. Wang, H. Wang et al., Microfluidic fabrication and thermoreversible response of core/shell photonic crystalline microspheres based on deformable nanogels. Langmuir 28, 17186–17192 (2012)

    Article  Google Scholar 

  82. T. Dey, Colloidal crystalline array of hydrogel-coated silica nanoparticles: effect of temperature and core size on photonic properties. J. Sol-Gel. Sci. Technol. 57, 132–141 (2010)

    Article  Google Scholar 

  83. U. Jeong, Y. Xia, Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids. Angew. Chem. Int. Ed. Engl. 44, 3099–3103 (2005)

    Article  Google Scholar 

  84. J. Zhou, C.Q. Sun, K. Pita et al., Thermally tuning of the photonic band gap of SiO[sub 2] colloid-crystal infilled with ferroelectric BaTiO[sub 3]. Appl. Phys. Lett. 78, 661 (2001)

    Article  Google Scholar 

  85. A.B. Pevtsov, D.A. Kurdyukov, V.G. Golubev et al., Ultrafast stop band kinetics in a three-dimensional opal- V O 2 photonic crystal controlled by a photoinduced semiconductor-metal phase transition. Phys. Rev. B 75, 153101 (2007)

    Article  Google Scholar 

  86. A.T. Exner, I. Pavlichenko, B.V. Lotsch et al., Low-cost thermo-optic imaging sensors: a detection principle based on tunable one-dimensional photonic crystals. ACS Appl. Mater. Interfaces 5, 1575–1582 (2013)

    Article  Google Scholar 

  87. Z.-Z. Gu, A. Fujishima, O. Sato, Photochemically tunable colloidal crystals. J. Am. Chem. Soc. 122, 12387–12388 (2000)

    Article  Google Scholar 

  88. S. Kubo, Z.-Z. Gu, K. Takahashi et al., Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic − isotropic phase transition. J. Am. Chem. Soc. 124, 10950–10951 (2002). doi:10.1021/ja026482r

    Article  Google Scholar 

  89. S. Kubo, Z.-Z. Gu, K. Takahashi et al., Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure. J. Am. Chem. Soc. 126, 8314–8319 (2004). doi:10.1021/ja0495056

    Article  Google Scholar 

  90. M. Kamenjicki, I.K. Lednev, A. Mikhonin et al., Photochemically controlled photonic crystals. Adv. Funct. Mater. 13, 774–780 (2003)

    Article  Google Scholar 

  91. M. Kamenjicki Maurer, I.K. Lednev, S.A. Asher, Photoswitchable Spirobenzopyran- Based Photochemically Controlled Photonic Crystals. Adv. Funct. Mater. 15, 1401–1406 (2005)

    Article  Google Scholar 

  92. S.V. Boriskina, Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis. J. Opt. Soc. Am. B 23, 1565 (2006). doi:10.1364/JOSAB.23.001565

    Article  Google Scholar 

  93. H. Lin, Z. Yi, J. Hu, Double resonance 1-D photonic crystal cavities for single-molecule mid-infrared photothermal spectroscopy: theory and design. Opt. Lett. 37, 1304–1306 (2012)

    Article  Google Scholar 

  94. E. Chow, A. Grot, L.W. Mirkarimi et al., Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity. Opt. Lett. 29, 1093 (2004). doi:10.1364/OL.29.001093

    Article  Google Scholar 

  95. X. Wang, Z. Xu, N. Lu et al., Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure. Opt. Commun. 281, 1725–1731 (2008). doi:10.1016/j.optcom.2007.11.040

    Article  Google Scholar 

  96. D.F. Dorfner, T. Hürlimann, T. Zabel et al., Silicon photonic crystal nanostructures for refractive index sensing. Appl. Phys. Lett. 93, 181103 (2008). doi:10.1063/1.3009203

    Article  Google Scholar 

  97. L.A. Shiramin, R. Kheradmand, A. Abbasi, High-sensitive double-hole defect refractive index sensor based on 2-D photonic crystal. IEEE Sens. J. 13, 1483–1486 (2013). doi:10.1109/JSEN.2012.2237093

    Article  Google Scholar 

  98. L. Huang, H. Tian, D. Yang et al., Optimization of figure of merit in label-free biochemical sensors by designing a ring defect coupled resonator. Opt. Commun. 332, 42–49 (2014). doi:10.1016/j.optcom.2014.06.033

    Article  Google Scholar 

  99. A. Francois, M. Himmelhaus, Optical biosensor based on whispering gallery mode excitations in clusters of microparticles. Appl. Phys. Lett. 92, 141107 (2008). doi:10.1063/1.2907491

    Article  Google Scholar 

  100. H. Kurt, M.N. Erim, N. Erim, Various photonic crystal bio-sensor configurations based on optical surface modes. Sens. Actuators B Chem. 165, 68–75 (2012). doi:10.1016/j.snb.2012.02.015

    Article  Google Scholar 

  101. W.-C. Lai, S. Chakravarty, Y. Zou et al., Slow light enhanced sensitivity of resonance modes in photonic crystal biosensors. Appl. Phys. Lett. 102, 41111 (2013). doi:10.1063/1.4789857

    Article  Google Scholar 

  102. O. Levi, M.M. Lee, J. Zhang et al., Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing, ed. by A.N. Cartwright, D.V. Nicolau, Biomed. Opt. 2007 (International Society for Optics and Photonics, 2007), p 64470P–64470P–9

    Google Scholar 

  103. H. Míguez, V. Kitaev, G.A. Ozin, Band spectroscopy of colloidal photonic crystal films. Appl. Phys. Lett. 84, 1239 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sevilla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sevilla, J., Andueza, A. (2017). Optical Sensing Based on Photonic Crystal Structures. In: Matias, I., Ikezawa, S., Corres, J. (eds) Fiber Optic Sensors. Smart Sensors, Measurement and Instrumentation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-42625-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42625-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42624-2

  • Online ISBN: 978-3-319-42625-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics