Skip to main content

2016 | OriginalPaper | Buchkapitel

What Can We Learn from Atomistic Simulations of Bioactive Glasses?

verfasst von : Alfonso Pedone, Maria Cristina Menziani

Erschienen in: Biocompatible Glasses

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last decades, most experimental efforts have been devoted to design bioactive glasses (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses) with enhanced biological and mechanical properties by adding specific ions to known bioactive compositions. Concurrently, computational research has been focused to the understanding of the relationships between bioactivity and composition by rationalization of the role of the doping ions. Thus, a deep knowledge of the structural organization of the constituent atoms of the bioactive glasses has been gained by the employment of ab initio and classical molecular dynamics simulations techniques. This chapter reviews the recent successes in this field by presenting, in a concise way, the structure–properties relationships of silicate, phospho-silicate and phosphate glasses with potential bioactive properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)CrossRef Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)CrossRef
2.
Zurück zum Zitat Brauer, D.S.: Bioactive glasses—structure and properties. Angew. Chem. Int. Ed. 54, 4160–4181 (2015)CrossRef Brauer, D.S.: Bioactive glasses—structure and properties. Angew. Chem. Int. Ed. 54, 4160–4181 (2015)CrossRef
3.
4.
Zurück zum Zitat Martin, R.A., Yue, S., Hanna, J.V., Lee, P.D., Newport, R.J., Smith, M.E., et al.: Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Philos. Transact. A Math. Phys. Eng. Sci. 370, 1422–1443 (2012)CrossRef Martin, R.A., Yue, S., Hanna, J.V., Lee, P.D., Newport, R.J., Smith, M.E., et al.: Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Philos. Transact. A Math. Phys. Eng. Sci. 370, 1422–1443 (2012)CrossRef
5.
Zurück zum Zitat Pedone, A.: Properties calculations of silica-based glasses by atomistic simulations techniques: a review. J. Phys. Chem. C 113, 20773–20784 (2009)CrossRef Pedone, A.: Properties calculations of silica-based glasses by atomistic simulations techniques: a review. J. Phys. Chem. C 113, 20773–20784 (2009)CrossRef
6.
Zurück zum Zitat Malavasi, G., Menziani, M.C., Pedone, A., Civalleri, B., Corno, M., Ugliengo, P.: A computational multiscale strategy to the study of amorphous materials. Theor. Chem. Acc. 117, 933–942 (2007)CrossRef Malavasi, G., Menziani, M.C., Pedone, A., Civalleri, B., Corno, M., Ugliengo, P.: A computational multiscale strategy to the study of amorphous materials. Theor. Chem. Acc. 117, 933–942 (2007)CrossRef
7.
Zurück zum Zitat Malavasi, G., Pedone, A., Menziani, M.C.: Towards a quantitative rationalization of multicomponent glass properties by means of molecular dynamics simulations. Mol. Simul. 32, 1045–1055 (2006)CrossRef Malavasi, G., Pedone, A., Menziani, M.C.: Towards a quantitative rationalization of multicomponent glass properties by means of molecular dynamics simulations. Mol. Simul. 32, 1045–1055 (2006)CrossRef
8.
9.
10.
Zurück zum Zitat Tilocca, A.: Current challenges in atomistic simulations of glasses for biomedical applications. Phys. Chem. Chem. Phys. 16, 3874–3880 (2014)CrossRef Tilocca, A.: Current challenges in atomistic simulations of glasses for biomedical applications. Phys. Chem. Chem. Phys. 16, 3874–3880 (2014)CrossRef
12.
Zurück zum Zitat Tilocca, A.: Structural models of bioactive glasses from molecular dynamics simulations. In: Proceeding of the Royal Society of London A Mathematical, Physical and Engineering Sciences (2009). rspa.2008.0462 Tilocca, A.: Structural models of bioactive glasses from molecular dynamics simulations. In: Proceeding of the Royal Society of London A Mathematical, Physical and Engineering Sciences (2009). rspa.2008.0462
13.
Zurück zum Zitat Cormack, A.N., Tilocca, A.: Structure and biological activity of glasses and ceramics. Philos. Transact. A Math. Phys. Eng. Sci. 370, 1271–1280 (2012)CrossRef Cormack, A.N., Tilocca, A.: Structure and biological activity of glasses and ceramics. Philos. Transact. A Math. Phys. Eng. Sci. 370, 1271–1280 (2012)CrossRef
14.
Zurück zum Zitat Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987) Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)
15.
Zurück zum Zitat Pedone, A., Corno, M., Civalleri, B., Malavasi, G., Menziani, M.C., Segre, U., et al.: An ab initio parameterized interatomic force field for hydroxyapatite. J. Mater. Chem. 17, 2061–2068 (2007)CrossRef Pedone, A., Corno, M., Civalleri, B., Malavasi, G., Menziani, M.C., Segre, U., et al.: An ab initio parameterized interatomic force field for hydroxyapatite. J. Mater. Chem. 17, 2061–2068 (2007)CrossRef
16.
Zurück zum Zitat Pedone, A., Malavasi, G., Menziani, M.C., Cormack, A.N., Segre, U.: A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J. Phys. Chem. B 110, 11780–11795 (2006)CrossRef Pedone, A., Malavasi, G., Menziani, M.C., Cormack, A.N., Segre, U.: A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J. Phys. Chem. B 110, 11780–11795 (2006)CrossRef
17.
Zurück zum Zitat Tilocca, A., de Leeuw, N.H., Cormack, A.N.: Shell-model molecular dynamics calculations of modified silicate glasses. Phys. Rev. B. 73, 104209 (2006)CrossRef Tilocca, A., de Leeuw, N.H., Cormack, A.N.: Shell-model molecular dynamics calculations of modified silicate glasses. Phys. Rev. B. 73, 104209 (2006)CrossRef
18.
Zurück zum Zitat Tilocca, A.: Short- and medium-range structure of multicomponent bioactive glasses and melts: an assessment of the performances of shell-model and rigid-ion potentials. J. Chem. Phys. 129, 084504 (2008)CrossRef Tilocca, A.: Short- and medium-range structure of multicomponent bioactive glasses and melts: an assessment of the performances of shell-model and rigid-ion potentials. J. Chem. Phys. 129, 084504 (2008)CrossRef
19.
Zurück zum Zitat Yu, H., van Gunsteren, W.F.: Accounting for polarization in molecular simulation. Comput. Phys. Commun. 172, 69–85 (2005)CrossRef Yu, H., van Gunsteren, W.F.: Accounting for polarization in molecular simulation. Comput. Phys. Commun. 172, 69–85 (2005)CrossRef
20.
Zurück zum Zitat Ispas, S., Benoit, M., Jund, P., Jullien, R.: Structural and electronic properties of the sodium tetrasilicate glass Na2Si4O9 from classical and ab initio molecular dynamics simulations. Phys. Rev. B 64, 214206 (2001)CrossRef Ispas, S., Benoit, M., Jund, P., Jullien, R.: Structural and electronic properties of the sodium tetrasilicate glass Na2Si4O9 from classical and ab initio molecular dynamics simulations. Phys. Rev. B 64, 214206 (2001)CrossRef
21.
Zurück zum Zitat Tilocca, A., de Leeuw, N.H.: Structural and electronic properties of modified sodium and soda-lime silicate glasses by Car-Parrinello molecular dynamics. J. Mater. Chem. 16, 1950–1955 (2006)CrossRef Tilocca, A., de Leeuw, N.H.: Structural and electronic properties of modified sodium and soda-lime silicate glasses by Car-Parrinello molecular dynamics. J. Mater. Chem. 16, 1950–1955 (2006)CrossRef
22.
Zurück zum Zitat Tilocca, A., de Leeuw, N.H.: Ab initio molecular dynamics study of 45S5 bioactive silicate glass. J. Phys. Chem. B 110, 25810–25816 (2006)CrossRef Tilocca, A., de Leeuw, N.H.: Ab initio molecular dynamics study of 45S5 bioactive silicate glass. J. Phys. Chem. B 110, 25810–25816 (2006)CrossRef
23.
Zurück zum Zitat Corno, M., Pedone, A., Dovesi, R., Ugliengo, P.: B3LYP simulation of the full vibrational spectrum of 45S5 bioactive silicate glass compared to nu-silica. Chem. Mater. 20, 5610–5621 (2008)CrossRef Corno, M., Pedone, A., Dovesi, R., Ugliengo, P.: B3LYP simulation of the full vibrational spectrum of 45S5 bioactive silicate glass compared to nu-silica. Chem. Mater. 20, 5610–5621 (2008)CrossRef
24.
Zurück zum Zitat Corno, M., Pedone, A.: Vibrational features of phospho-silicate glasses: Periodic B3LYP simulations. Chem. Phys. Lett. 476, 218–222 (2009)CrossRef Corno, M., Pedone, A.: Vibrational features of phospho-silicate glasses: Periodic B3LYP simulations. Chem. Phys. Lett. 476, 218–222 (2009)CrossRef
25.
Zurück zum Zitat Pedone, A., Charpentier, T., Malavasi, G., Menziani, M.C.: New insights into the atomic structure of 45S5 bioglass by means of solid-state NMR spectroscopy and accurate first-principles simulations. Chem. Mater. 22, 5644–5652 (2010)CrossRef Pedone, A., Charpentier, T., Malavasi, G., Menziani, M.C.: New insights into the atomic structure of 45S5 bioglass by means of solid-state NMR spectroscopy and accurate first-principles simulations. Chem. Mater. 22, 5644–5652 (2010)CrossRef
26.
Zurück zum Zitat Charpentier, T., Menziani, M.C., Pedone, A.: Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses. Rsc Adv. 3, 10550–10578 (2013)CrossRef Charpentier, T., Menziani, M.C., Pedone, A.: Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses. Rsc Adv. 3, 10550–10578 (2013)CrossRef
27.
Zurück zum Zitat Tilocca, A., Cormack, A.N., de Leeuw, N.H.: The structure of bioactive silicate glasses: new insight from molecular dynamics simulations. Chem. Mater. 19, 95–103 (2007)CrossRef Tilocca, A., Cormack, A.N., de Leeuw, N.H.: The structure of bioactive silicate glasses: new insight from molecular dynamics simulations. Chem. Mater. 19, 95–103 (2007)CrossRef
28.
Zurück zum Zitat Tilocca, A., Cormack, A.N., de Leeuw, N.H.: The formation of nanoscale structures in soluble phosphosilicate glasses for biomedical applications: MD simulations. Faraday Discuss. 136, 45–55 (2007)CrossRef Tilocca, A., Cormack, A.N., de Leeuw, N.H.: The formation of nanoscale structures in soluble phosphosilicate glasses for biomedical applications: MD simulations. Faraday Discuss. 136, 45–55 (2007)CrossRef
29.
Zurück zum Zitat Hill, R.G., Brauer, D.S.: Predicting the bioactivity of glasses using the network connectivity or split network models. J. Non Cryst. Solids 357, 3884–3887 (2011)CrossRef Hill, R.G., Brauer, D.S.: Predicting the bioactivity of glasses using the network connectivity or split network models. J. Non Cryst. Solids 357, 3884–3887 (2011)CrossRef
30.
Zurück zum Zitat Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Salinas, A.J., Vallet-Regi, M.: New insights into the bioactivity of SiO2–CaO and SiO2–CaO–P2O5 sol–gel glasses by molecular dynamics simulations. J. Sol–Gel. Sci. Technol. 67, 208–219 (2013)CrossRef Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Salinas, A.J., Vallet-Regi, M.: New insights into the bioactivity of SiO2–CaO and SiO2–CaO–P2O5 sol–gel glasses by molecular dynamics simulations. J. Sol–Gel. Sci. Technol. 67, 208–219 (2013)CrossRef
31.
Zurück zum Zitat Lusvardi, G., Malavasi, G., Tarsitano, F., Menabue, L., Menziani, M.C., Pedone, A.: Quantitative structure–property relationships of potentially bioactive fluoro phospho-silicate glasses. J. Phys. Chem. B 113, 10331–10338 (2009)CrossRef Lusvardi, G., Malavasi, G., Tarsitano, F., Menabue, L., Menziani, M.C., Pedone, A.: Quantitative structure–property relationships of potentially bioactive fluoro phospho-silicate glasses. J. Phys. Chem. B 113, 10331–10338 (2009)CrossRef
32.
Zurück zum Zitat Christie, J.K., Pedone, A., Menziani, M.C., Tilocca, A.: Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations. J. Phys. Chem. B 115, 2038–2045 (2011)CrossRef Christie, J.K., Pedone, A., Menziani, M.C., Tilocca, A.: Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations. J. Phys. Chem. B 115, 2038–2045 (2011)CrossRef
33.
Zurück zum Zitat Lusvardi, G., Malavasi, G., Cortada, M., Menabue, L., Menziani, M.C., Pedone, A., et al.: Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation. J. Phys. Chem. B 112, 12730–12739 (2008)CrossRef Lusvardi, G., Malavasi, G., Cortada, M., Menabue, L., Menziani, M.C., Pedone, A., et al.: Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation. J. Phys. Chem. B 112, 12730–12739 (2008)CrossRef
34.
Zurück zum Zitat Christie, J.K., Tilocca, A.: Integrating biological activity into radioisotope vectors: molecular dynamics models of yttrium-doped bioactive glasses. J. Mater. Chem. 22, 12023–12031 (2012)CrossRef Christie, J.K., Tilocca, A.: Integrating biological activity into radioisotope vectors: molecular dynamics models of yttrium-doped bioactive glasses. J. Mater. Chem. 22, 12023–12031 (2012)CrossRef
35.
Zurück zum Zitat Pedone, A., Malavasi, G., Menziani, M.C.: Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses. J. Phys. Chem. C 113, 15723–15730 (2009)CrossRef Pedone, A., Malavasi, G., Menziani, M.C.: Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses. J. Phys. Chem. C 113, 15723–15730 (2009)CrossRef
36.
Zurück zum Zitat Christie, J.K., Tilocca, A.: Molecular dynamics simulations and structural descriptors of radioisotope glass vectors for in situ radiotherapy. J. Phys. Chem. B 116, 12614–12620 (2012)CrossRef Christie, J.K., Tilocca, A.: Molecular dynamics simulations and structural descriptors of radioisotope glass vectors for in situ radiotherapy. J. Phys. Chem. B 116, 12614–12620 (2012)CrossRef
37.
Zurück zum Zitat Christie, J.K., Tilocca, A.: Aluminosilicate glasses as yttrium vectors for in situ radiotherapy: understanding composition-durability effects through molecular dynamics simulations. Chem. Mater. 22, 3725–3734 (2010)CrossRef Christie, J.K., Tilocca, A.: Aluminosilicate glasses as yttrium vectors for in situ radiotherapy: understanding composition-durability effects through molecular dynamics simulations. Chem. Mater. 22, 3725–3734 (2010)CrossRef
38.
Zurück zum Zitat Malavasi, G., Pedone, A., Menziani, M.C.: Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations. J. Phys. Chem. B 117, 4142–4150 (2013)CrossRef Malavasi, G., Pedone, A., Menziani, M.C.: Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations. J. Phys. Chem. B 117, 4142–4150 (2013)CrossRef
39.
Zurück zum Zitat Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Segre, U.: A computational tool for the prediction of crystalline phases obtained from controlled crystallization of glasses. J. Phys. Chem. B 109, 21586–21592 (2005)CrossRef Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Segre, U.: A computational tool for the prediction of crystalline phases obtained from controlled crystallization of glasses. J. Phys. Chem. B 109, 21586–21592 (2005)CrossRef
40.
Zurück zum Zitat Malavasi, G., Lusvardi, G., Pedone, A., Menziani, M.C., Dappiaggi, M., Gualtieri, A., et al.: Crystallization kinetics of bioactive glasses in the ZnO–Na2O–CaO–SiO2 system. J. Phys. Chem. A 111, 8401–8408 (2007)CrossRef Malavasi, G., Lusvardi, G., Pedone, A., Menziani, M.C., Dappiaggi, M., Gualtieri, A., et al.: Crystallization kinetics of bioactive glasses in the ZnO–Na2O–CaO–SiO2 system. J. Phys. Chem. A 111, 8401–8408 (2007)CrossRef
41.
Zurück zum Zitat Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5, 117–141 (1971)CrossRef Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5, 117–141 (1971)CrossRef
42.
Zurück zum Zitat Kokubo, T.: Surface chemistry of bioactive glass-ceramics. J. Non Cryst. Solids 120, 138–151 (1990)CrossRef Kokubo, T.: Surface chemistry of bioactive glass-ceramics. J. Non Cryst. Solids 120, 138–151 (1990)CrossRef
43.
Zurück zum Zitat Xynos, I.D., Edgar, A.J., Buttery, L.D., Hench, L.L., Polak, J.M.: Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J. Biomed. Mater. Res. 55, 151–157 (2001)CrossRef Xynos, I.D., Edgar, A.J., Buttery, L.D., Hench, L.L., Polak, J.M.: Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J. Biomed. Mater. Res. 55, 151–157 (2001)CrossRef
44.
Zurück zum Zitat Karlsson, K.H., Fröberg, K., Ringbom, T.: A structural approach to bone adhering of bioactive glasses. J. Non Cryst. Solids 112, 69–72 (1989)CrossRef Karlsson, K.H., Fröberg, K., Ringbom, T.: A structural approach to bone adhering of bioactive glasses. J. Non Cryst. Solids 112, 69–72 (1989)CrossRef
45.
Zurück zum Zitat Hill, R.: An alternative view of the degradation of bioglass. J. Mater. Sci. Lett. 15, 1122–1125 (1996)CrossRef Hill, R.: An alternative view of the degradation of bioglass. J. Mater. Sci. Lett. 15, 1122–1125 (1996)CrossRef
46.
Zurück zum Zitat Lockyer, M.W.G., Holland, D., Dupree, R.: NMR investigation of the structure of some bioactive and related glasses. J. Non Cryst. Solids 188, 207–219 (1995)CrossRef Lockyer, M.W.G., Holland, D., Dupree, R.: NMR investigation of the structure of some bioactive and related glasses. J. Non Cryst. Solids 188, 207–219 (1995)CrossRef
47.
Zurück zum Zitat Elgayar, I., Aliev, A.E., Boccaccini, A.R., Hill, R.G.: Structural analysis of bioactive glasses. J. Non Cryst. Solids 351, 173–183 (2005)CrossRef Elgayar, I., Aliev, A.E., Boccaccini, A.R., Hill, R.G.: Structural analysis of bioactive glasses. J. Non Cryst. Solids 351, 173–183 (2005)CrossRef
48.
Zurück zum Zitat Pedone, A., Charpentier, T., Menziani, M.C.: The structure of fluoride-containing bioactive glasses: new insights from first-principles calculations and solid state NMR spectroscopy. J. Mater. Chem. 22, 12599–12608 (2012)CrossRef Pedone, A., Charpentier, T., Menziani, M.C.: The structure of fluoride-containing bioactive glasses: new insights from first-principles calculations and solid state NMR spectroscopy. J. Mater. Chem. 22, 12599–12608 (2012)CrossRef
49.
Zurück zum Zitat Linati, L., Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Mustarelli, P., et al.: Qualitative and quantitative structure–property relationships analysis of multicomponent potential bioglasses. J. Phys. Chem. B 109, 4989–4998 (2005)CrossRef Linati, L., Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Mustarelli, P., et al.: Qualitative and quantitative structure–property relationships analysis of multicomponent potential bioglasses. J. Phys. Chem. B 109, 4989–4998 (2005)CrossRef
50.
Zurück zum Zitat Fayon, F., Duée, C., Poumeyrol, T., Allix, M., Massiot, D.: Evidence of Nanometric-sized phosphate clusters in bioactive glasses as revealed by solid-state 31P NMR. J. Phys. Chem. C 117, 2283–2288 (2013)CrossRef Fayon, F., Duée, C., Poumeyrol, T., Allix, M., Massiot, D.: Evidence of Nanometric-sized phosphate clusters in bioactive glasses as revealed by solid-state 31P NMR. J. Phys. Chem. C 117, 2283–2288 (2013)CrossRef
51.
Zurück zum Zitat Xiang, Y., Du, J.: Effect of strontium substitution on the structure of 45S5 bioglasses. Chem. Mater. 23, 2703–2717 (2011)CrossRef Xiang, Y., Du, J.: Effect of strontium substitution on the structure of 45S5 bioglasses. Chem. Mater. 23, 2703–2717 (2011)CrossRef
52.
Zurück zum Zitat Stevensson, B., Mathew, R., Edén, M.: Assessing the phosphate distribution in bioactive phosphosilicate glasses by 31P solid-state NMR and molecular dynamics simulations. J. Phys. Chem. B 118, 8863–8876 (2014)CrossRef Stevensson, B., Mathew, R., Edén, M.: Assessing the phosphate distribution in bioactive phosphosilicate glasses by 31P solid-state NMR and molecular dynamics simulations. J. Phys. Chem. B 118, 8863–8876 (2014)CrossRef
53.
Zurück zum Zitat Tilocca, A., Cormack, A.N.: Structural effects of phosphorus inclusion in bioactive silicate glasses. J. Phys. Chem. B 111, 14256–14264 (2007)CrossRef Tilocca, A., Cormack, A.N.: Structural effects of phosphorus inclusion in bioactive silicate glasses. J. Phys. Chem. B 111, 14256–14264 (2007)CrossRef
54.
Zurück zum Zitat Linati, L., Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Mustarelli, P., et al.: Medium-range order in phospho-silicate bioactive glasses: insights from MAS–NMR spectra, chemical durability experiments and molecular dynamics simulations. J. Non Cryst. Solids 354, 84–89 (2008)CrossRef Linati, L., Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Mustarelli, P., et al.: Medium-range order in phospho-silicate bioactive glasses: insights from MAS–NMR spectra, chemical durability experiments and molecular dynamics simulations. J. Non Cryst. Solids 354, 84–89 (2008)CrossRef
55.
Zurück zum Zitat Mathew, R., Stevensson, B., Edén, M.: Na/ca intermixing around silicate and phosphate groups in bioactive phosphosilicate glasses revealed by heteronuclear solid-state NMR and molecular dynamics simulations. J. Phys. Chem. B 119, 5701–5715 (2015)CrossRef Mathew, R., Stevensson, B., Edén, M.: Na/ca intermixing around silicate and phosphate groups in bioactive phosphosilicate glasses revealed by heteronuclear solid-state NMR and molecular dynamics simulations. J. Phys. Chem. B 119, 5701–5715 (2015)CrossRef
56.
Zurück zum Zitat Mathew, R., Stevensson, B., Tilocca, A., Edén, M.: Toward a rational design of bioactive glasses with optimal structural features: composition-structure correlations unveiled by solid-state NMR and MD simulations. J. Phys. Chem. B 118, 833–844 (2014)CrossRef Mathew, R., Stevensson, B., Tilocca, A., Edén, M.: Toward a rational design of bioactive glasses with optimal structural features: composition-structure correlations unveiled by solid-state NMR and MD simulations. J. Phys. Chem. B 118, 833–844 (2014)CrossRef
57.
Zurück zum Zitat Hoppe, A., Güldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011)CrossRef Hoppe, A., Güldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011)CrossRef
58.
Zurück zum Zitat Pedone, A., Malavasi, G., Menziani, M.C., Segre, U., Cormack, A.N.: Role of magnesium in soda-lime glasses: insight into structural, transport, and mechanical properties through computer simulations. J. Phys. Chem. C 112, 11034–11041 (2008)CrossRef Pedone, A., Malavasi, G., Menziani, M.C., Segre, U., Cormack, A.N.: Role of magnesium in soda-lime glasses: insight into structural, transport, and mechanical properties through computer simulations. J. Phys. Chem. C 112, 11034–11041 (2008)CrossRef
59.
Zurück zum Zitat Kapoor, S., Semitela, Â., Goel, A., Xiang, Y., Du, J., Lourenço, A.H., et al.: Understanding the composition-structure-bioactivity relationships in diopside (CaO · MgO · 2SiO2)-tricalcium phosphate (3CaO · P2O5) glass system. Acta Biomater. 15, 210–226 (2015)CrossRef Kapoor, S., Semitela, Â., Goel, A., Xiang, Y., Du, J., Lourenço, A.H., et al.: Understanding the composition-structure-bioactivity relationships in diopside (CaO · MgO · 2SiO2)-tricalcium phosphate (3CaO · P2O5) glass system. Acta Biomater. 15, 210–226 (2015)CrossRef
60.
Zurück zum Zitat Du, J., Xiang, Y.: Effect of strontium substitution on the structure, ionic diffusion and dynamic properties of 45S5 Bioactive glasses. J. Non Cryst. Solids 358, 1059–1071 (2012)CrossRef Du, J., Xiang, Y.: Effect of strontium substitution on the structure, ionic diffusion and dynamic properties of 45S5 Bioactive glasses. J. Non Cryst. Solids 358, 1059–1071 (2012)CrossRef
61.
Zurück zum Zitat Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C.: Synthesis, characterization, and molecular dynamics simulation of Na2O–CaO–SiO2–ZnO glasses. J. Phys. Chem. B 106, 9753–9760 (2002)CrossRef Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C.: Synthesis, characterization, and molecular dynamics simulation of Na2O–CaO–SiO2–ZnO glasses. J. Phys. Chem. B 106, 9753–9760 (2002)CrossRef
62.
Zurück zum Zitat Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C.: A combined experimental-computational strategy for the design, synthesis and characterization of bioactive zinc-silicate glasses. Key Eng. Mater. 377, 211–224 (2008)CrossRef Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C.: A combined experimental-computational strategy for the design, synthesis and characterization of bioactive zinc-silicate glasses. Key Eng. Mater. 377, 211–224 (2008)CrossRef
63.
Zurück zum Zitat Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Segre, U.: Density of multicomponent silica-based potential bioglasses: quantitative structure–property relationships (QSPR) analysis. J. Eur. Ceram. Soc. 27, 499–504 (2007)CrossRef Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Segre, U.: Density of multicomponent silica-based potential bioglasses: quantitative structure–property relationships (QSPR) analysis. J. Eur. Ceram. Soc. 27, 499–504 (2007)CrossRef
64.
Zurück zum Zitat Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Segre, U., Carnasciali, M.M., et al.: A combined experimental and computational approach to (Na2O)1 – x · CaO · (ZnO)x · 2SiO2 glasses characterization. J. Non Cryst. Solids 345–346, 710–714 (2004)CrossRef Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Segre, U., Carnasciali, M.M., et al.: A combined experimental and computational approach to (Na2O)1 – x · CaO · (ZnO)x · 2SiO2 glasses characterization. J. Non Cryst. Solids 345–346, 710–714 (2004)CrossRef
65.
Zurück zum Zitat Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Segre, U., et al.: Properties of zinc releasing surfaces for clinical applications. J. Biomater. Appl. 22, 505–526 (2008)CrossRef Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Segre, U., et al.: Properties of zinc releasing surfaces for clinical applications. J. Biomater. Appl. 22, 505–526 (2008)CrossRef
66.
Zurück zum Zitat Lusvardi, G., Zaffe, D., Menabue, L., Bertoldi, C., Malavasi, G., Consolo, U.: In vitro and in vivo behaviour of zinc-doped phosphosilicate glasses. Acta Biomater. 5, 419–428 (2009)CrossRef Lusvardi, G., Zaffe, D., Menabue, L., Bertoldi, C., Malavasi, G., Consolo, U.: In vitro and in vivo behaviour of zinc-doped phosphosilicate glasses. Acta Biomater. 5, 419–428 (2009)CrossRef
67.
Zurück zum Zitat Goel, A., Kapoor, S., Tilocca, A., Rajagopal, R.R., Ferreira, J.M.F.: Structural role of zinc in biodegradation of alkali-free bioactive glasses. J. Mater. Chem. B 1, 3073–3082 (2013)CrossRef Goel, A., Kapoor, S., Tilocca, A., Rajagopal, R.R., Ferreira, J.M.F.: Structural role of zinc in biodegradation of alkali-free bioactive glasses. J. Mater. Chem. B 1, 3073–3082 (2013)CrossRef
68.
Zurück zum Zitat Xiang, Y., Du, J., Skinner, L.B., Benmore, C.J., Wren, A.W., Boyd, D.J., et al.: Structure and diffusion of ZnO–SrO–CaO–Na2O–SiO2 bioactive glasses: a combined high energy X-ray diffraction and molecular dynamics simulations study. RSC Adv. 3, 5966–5978 (2013)CrossRef Xiang, Y., Du, J., Skinner, L.B., Benmore, C.J., Wren, A.W., Boyd, D.J., et al.: Structure and diffusion of ZnO–SrO–CaO–Na2O–SiO2 bioactive glasses: a combined high energy X-ray diffraction and molecular dynamics simulations study. RSC Adv. 3, 5966–5978 (2013)CrossRef
69.
Zurück zum Zitat Kapoor, S., Goel, A., Tilocca, A., Dhuna, V., Bhatia, G., Dhuna, K., et al.: Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomater. 10, 3264–3278 (2014)CrossRef Kapoor, S., Goel, A., Tilocca, A., Dhuna, V., Bhatia, G., Dhuna, K., et al.: Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomater. 10, 3264–3278 (2014)CrossRef
70.
Zurück zum Zitat Rabiee, S.M., Nazparvar, N., Azizian, M., Vashaee, D., Tayebi, L.: Effect of ion substitution on properties of bioactive glasses: a review. Ceram. Int. 41, 7241–7251 (2015)CrossRef Rabiee, S.M., Nazparvar, N., Azizian, M., Vashaee, D., Tayebi, L.: Effect of ion substitution on properties of bioactive glasses: a review. Ceram. Int. 41, 7241–7251 (2015)CrossRef
71.
Zurück zum Zitat Tilocca, A.: Models of structure, dynamics and reactivity of bioglasses: a review. J. Mater. Chem. 20, 6848–6858 (2010)CrossRef Tilocca, A.: Models of structure, dynamics and reactivity of bioglasses: a review. J. Mater. Chem. 20, 6848–6858 (2010)CrossRef
72.
Zurück zum Zitat Lusvardi, G., Malavasi, G., Menabue, L., Aina, V., Morterra, C.: Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions. Acta Biomater. 5, 3548–3562 (2009)CrossRef Lusvardi, G., Malavasi, G., Menabue, L., Aina, V., Morterra, C.: Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions. Acta Biomater. 5, 3548–3562 (2009)CrossRef
73.
Zurück zum Zitat Nicolini, V., Gambuzzi, E., Malavasi, G., Menabue, L., Menziani, M.C., Lusvardi, G., et al.: Evidence of catalase mimetic activity in Ce3+/Ce4+ doped bioactive glasses. J. Phys. Chem. B 119, 4009–4019 (2015)CrossRef Nicolini, V., Gambuzzi, E., Malavasi, G., Menabue, L., Menziani, M.C., Lusvardi, G., et al.: Evidence of catalase mimetic activity in Ce3+/Ce4+ doped bioactive glasses. J. Phys. Chem. B 119, 4009–4019 (2015)CrossRef
74.
Zurück zum Zitat Nicolini, V., Varini, E., Malavasi, G., Menabue, L., Menziani, M.C., Lusvardi, G., et al.: The effect of composition on structural, thermal, redox and bioactive properties of ce-containing glasses. Mater. Des. 97, 73–85 (2016) Nicolini, V., Varini, E., Malavasi, G., Menabue, L., Menziani, M.C., Lusvardi, G., et al.: The effect of composition on structural, thermal, redox and bioactive properties of ce-containing glasses. Mater. Des. 97, 73–85 (2016)
75.
Zurück zum Zitat Pedone, A., Muniz-Miranda, F., Tilocca, A., Menziani, M.C.: The antioxidant properties of Ce-containing bioactive glass nanoparticles explained by molecular dynamics simulations. Biomed. Glas. 2, 19–28 (2016) Pedone, A., Muniz-Miranda, F., Tilocca, A., Menziani, M.C.: The antioxidant properties of Ce-containing bioactive glass nanoparticles explained by molecular dynamics simulations. Biomed. Glas. 2, 19–28 (2016)
76.
Zurück zum Zitat Leonelli, C., Lusvardi, G., Malavasi, G., Menabue, L., Tonelli, M.: Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. J. Non Cryst. Solids 316, 198–216 (2003)CrossRef Leonelli, C., Lusvardi, G., Malavasi, G., Menabue, L., Tonelli, M.: Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. J. Non Cryst. Solids 316, 198–216 (2003)CrossRef
77.
Zurück zum Zitat Berardo, E., Pedone, A., Ugliengo, P., Corno, M.: DFT modeling of 45S5 and 77S Soda-lime phospho-silicate glass surfaces: clues on different bioactivity mechanism. Langmuir 29, 5749–5759 (2013)CrossRef Berardo, E., Pedone, A., Ugliengo, P., Corno, M.: DFT modeling of 45S5 and 77S Soda-lime phospho-silicate glass surfaces: clues on different bioactivity mechanism. Langmuir 29, 5749–5759 (2013)CrossRef
78.
Zurück zum Zitat Sahai, N., Anseau, M.: Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces. Biomaterials 26, 5763–5770 (2005)CrossRef Sahai, N., Anseau, M.: Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces. Biomaterials 26, 5763–5770 (2005)CrossRef
79.
Zurück zum Zitat Bolis, V., Busco, C., Aina, V., Morterra, C., Ugliengo, P.: Surface properties of silica-based biomaterials: ca species at the surface of amorphous silica as model sites. J. Phys. Chem. C 112, 16879–16892 (2008)CrossRef Bolis, V., Busco, C., Aina, V., Morterra, C., Ugliengo, P.: Surface properties of silica-based biomaterials: ca species at the surface of amorphous silica as model sites. J. Phys. Chem. C 112, 16879–16892 (2008)CrossRef
80.
Zurück zum Zitat Tilocca, A., Cormack, A.N.: Exploring the surface of bioactive glasses: water adsorption and reactivity. J. Phys. Chem. C 112, 11936–11945 (2008)CrossRef Tilocca, A., Cormack, A.N.: Exploring the surface of bioactive glasses: water adsorption and reactivity. J. Phys. Chem. C 112, 11936–11945 (2008)CrossRef
81.
Zurück zum Zitat Tilocca, A., Cormack, A.N.: Modeling the water–bioglass interface by ab initio molecular dynamics simulations. ACS Appl. Mater. Interfaces. 1, 1324–1333 (2009)CrossRef Tilocca, A., Cormack, A.N.: Modeling the water–bioglass interface by ab initio molecular dynamics simulations. ACS Appl. Mater. Interfaces. 1, 1324–1333 (2009)CrossRef
82.
Zurück zum Zitat Pedone, A., Malavasi, G., Menziani, M.C., Segre, U., Musso, F., Corno, M., et al.: FFSiOH: a new force field for silica polymorphs and their hydroxylated surfaces based on periodic B3LYP calculations. Chem. Mater. 20, 2522–2531 (2008)CrossRef Pedone, A., Malavasi, G., Menziani, M.C., Segre, U., Musso, F., Corno, M., et al.: FFSiOH: a new force field for silica polymorphs and their hydroxylated surfaces based on periodic B3LYP calculations. Chem. Mater. 20, 2522–2531 (2008)CrossRef
83.
Zurück zum Zitat Tilocca, A.: Molecular dynamics simulations of a bioactive glass nanoparticle. J. Mater. Chem. 21, 12660–12667 (2011)CrossRef Tilocca, A.: Molecular dynamics simulations of a bioactive glass nanoparticle. J. Mater. Chem. 21, 12660–12667 (2011)CrossRef
84.
Zurück zum Zitat Neel, E.A.A., Pickup, D.M., Valappil, S.P., Newport, R.J., Knowles, J.C.: Bioactive functional materials: a perspective on phosphate-based glasses. J. Mater. Chem. 19, 690–701 (2009)CrossRef Neel, E.A.A., Pickup, D.M., Valappil, S.P., Newport, R.J., Knowles, J.C.: Bioactive functional materials: a perspective on phosphate-based glasses. J. Mater. Chem. 19, 690–701 (2009)CrossRef
85.
Zurück zum Zitat Knowles, J.C.: Phosphate based glasses for biomedical applications. J. Mater. Chem. 13, 2395–2401 (2003)CrossRef Knowles, J.C.: Phosphate based glasses for biomedical applications. J. Mater. Chem. 13, 2395–2401 (2003)CrossRef
86.
Zurück zum Zitat Ahmed, I., Collins, C.A., Lewis, M.P., Olsen, I., Knowles, J.C.: Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25, 3223–3232 (2004)CrossRef Ahmed, I., Collins, C.A., Lewis, M.P., Olsen, I., Knowles, J.C.: Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25, 3223–3232 (2004)CrossRef
87.
Zurück zum Zitat Neel, E.A.A., Ahmed, I., Pratten, J., Nazhat, S.N., Knowles, J.C.: Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials 26, 2247–2254 (2005)CrossRef Neel, E.A.A., Ahmed, I., Pratten, J., Nazhat, S.N., Knowles, J.C.: Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials 26, 2247–2254 (2005)CrossRef
88.
Zurück zum Zitat Ahmed, I., Lewis, M., Olsen, I., Knowles, J.C.: Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25, 491–499 (2004)CrossRef Ahmed, I., Lewis, M., Olsen, I., Knowles, J.C.: Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25, 491–499 (2004)CrossRef
89.
Zurück zum Zitat Uo, M., Mizuno, M., Kuboki, Y., Makishima, A., Watari, F.: Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses. Biomaterials 19, 2277–2284 (1998)CrossRef Uo, M., Mizuno, M., Kuboki, Y., Makishima, A., Watari, F.: Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses. Biomaterials 19, 2277–2284 (1998)CrossRef
90.
Zurück zum Zitat Valappil, S.P., Ready, D., Abou Neel, E.A., Pickup, D.M., O’Dell, L.A., Chrzanowski, W., et al.: Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater. 5, 1198–1210 (2009)CrossRef Valappil, S.P., Ready, D., Abou Neel, E.A., Pickup, D.M., O’Dell, L.A., Chrzanowski, W., et al.: Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater. 5, 1198–1210 (2009)CrossRef
91.
Zurück zum Zitat Tang, E., Di Tommaso, D., de Leeuw, N.H.: An ab initio molecular dynamics study of bioactive phosphate glasses. Adv. Eng. Mater. 12, B331–B338 (2010)CrossRef Tang, E., Di Tommaso, D., de Leeuw, N.H.: An ab initio molecular dynamics study of bioactive phosphate glasses. Adv. Eng. Mater. 12, B331–B338 (2010)CrossRef
92.
Zurück zum Zitat Ainsworth, R.I., Tommaso, D.D., Christie, J.K., de Leeuw, N.H.: Polarizable force field development and molecular dynamics study of phosphate-based glasses. J. Chem. Phys. 137, 234502 (2012)CrossRef Ainsworth, R.I., Tommaso, D.D., Christie, J.K., de Leeuw, N.H.: Polarizable force field development and molecular dynamics study of phosphate-based glasses. J. Chem. Phys. 137, 234502 (2012)CrossRef
93.
Zurück zum Zitat Christie, J.K., Ainsworth, R.I., Di Tommaso, D., de Leeuw, N.H.: Nanoscale chains control the solubility of phosphate glasses for biomedical applications. J. Phys. Chem. B 117, 10652–10657 (2013)CrossRef Christie, J.K., Ainsworth, R.I., Di Tommaso, D., de Leeuw, N.H.: Nanoscale chains control the solubility of phosphate glasses for biomedical applications. J. Phys. Chem. B 117, 10652–10657 (2013)CrossRef
94.
Zurück zum Zitat Christie, J.K., Ainsworth, R.I., de Leeuw, N.H.: Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses. Biomaterials 35, 6164–6171 (2014)CrossRef Christie, J.K., Ainsworth, R.I., de Leeuw, N.H.: Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses. Biomaterials 35, 6164–6171 (2014)CrossRef
95.
Zurück zum Zitat Ainsworth, R.I., Christie, J.K., de Leeuw, N.H.: On the structure of biomedical silver-doped phosphate-based glasses from molecular dynamics simulations. Phys. Chem. Chem. Phys. 16, 21135–21143 (2014)CrossRef Ainsworth, R.I., Christie, J.K., de Leeuw, N.H.: On the structure of biomedical silver-doped phosphate-based glasses from molecular dynamics simulations. Phys. Chem. Chem. Phys. 16, 21135–21143 (2014)CrossRef
97.
Zurück zum Zitat Sheridan, R., Doherty, P.J., Gilchrist, T., Healy, D.: The effect of antibacterial agents on the behaviour of cultured mammalian fibroblasts. J. Mater. Sci. Mater. Med. 6, 853–856 (1995)CrossRef Sheridan, R., Doherty, P.J., Gilchrist, T., Healy, D.: The effect of antibacterial agents on the behaviour of cultured mammalian fibroblasts. J. Mater. Sci. Mater. Med. 6, 853–856 (1995)CrossRef
98.
Zurück zum Zitat Ahmed, I., Ready, D., Wilson, M., Knowles, J.C.: Antimicrobial effect of silver-doped phosphate-based glasses. J. Biomed. Mater. Res. A 79A, 618–626 (2006)CrossRef Ahmed, I., Ready, D., Wilson, M., Knowles, J.C.: Antimicrobial effect of silver-doped phosphate-based glasses. J. Biomed. Mater. Res. A 79A, 618–626 (2006)CrossRef
99.
Zurück zum Zitat Randall, C.P., Oyama, L.B., Bostock, J.M., Chopra, I., O’Neill, A.J.: The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. J. Antimicrob. Chemother. 68, 131–138 (2013)CrossRef Randall, C.P., Oyama, L.B., Bostock, J.M., Chopra, I., O’Neill, A.J.: The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. J. Antimicrob. Chemother. 68, 131–138 (2013)CrossRef
100.
Zurück zum Zitat Valappil, S.P., Pickup, D.M., Carroll, D.L., Hope, C.K., Pratten, J., Newport, R.J., et al.: Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob. Agents Chemother. 51, 4453–4461 (2007)CrossRef Valappil, S.P., Pickup, D.M., Carroll, D.L., Hope, C.K., Pratten, J., Newport, R.J., et al.: Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob. Agents Chemother. 51, 4453–4461 (2007)CrossRef
Metadaten
Titel
What Can We Learn from Atomistic Simulations of Bioactive Glasses?
verfasst von
Alfonso Pedone
Maria Cristina Menziani
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-44249-5_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.