Skip to main content

2016 | OriginalPaper | Buchkapitel

Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks

verfasst von : Chuan Li, Michael Wand

Erschienen in: Computer Vision – ECCV 2016

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper proposes Markovian Generative Adversarial Networks (MGANs), a method for training generative networks for efficient texture synthesis. While deep neural network approaches have recently demonstrated remarkable results in terms of synthesis quality, they still come at considerable computational costs (minutes of run-time for low-res images). Our paper addresses this efficiency issue. Instead of a numerical deconvolution in previous work, we precompute a feed-forward, strided convolutional network that captures the feature statistics of Markovian patches and is able to directly generate outputs of arbitrary dimensions. Such network can directly decode brown noise to realistic texture, or photos to artistic paintings. With adversarial training, we obtain quality comparable to recent neural texture synthesis methods. As no optimization is required at generation time, our run-time performance (0.25 M pixel images at 25 Hz) surpasses previous neural texture synthesizers by a significant margin (at least 500 times faster). We apply this idea to texture synthesis, style transfer, and video stylization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
See supplementary material and code at: https://​github.​com/​chuanli11/​MGANs.
 
2
Strided convolution, ReLUs, batch normalization, removing fully connected layers.
 
3
Since Ulyanov et al. [22] and Johnson et al. [10] are very similar approaches, here we only compare to one of them [22]. The main differences of [10] are: (1) using a residual architecture instead of concatenating the outputs from different layers; (2) no additional noise in the decoding process.
 
4
We need to use “brown” noise with spectrum decaying to the higher frequencies because flat “white” noise creates an almost flat response in the encoding of the VGG network. Somer lower-frequency structure is required to trigger the feature detectors in the discriminative network.
 
Literatur
1.
Zurück zum Zitat Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. In: SIGGRAH, pp. 24:1–24:11 (2009) Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. In: SIGGRAH, pp. 24:1–24:11 (2009)
3.
Zurück zum Zitat Denton, E.L., Fergus, R., Szlam, A., Chintala, S.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: NIPS (2015) Denton, E.L., Fergus, R., Szlam, A., Chintala, S.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: NIPS (2015)
5.
Zurück zum Zitat Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH, pp. 341–346 (2001) Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH, pp. 341–346 (2001)
8.
Zurück zum Zitat Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014) Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: NIPS, pp. 2672–2680 (2014)
9.
Zurück zum Zitat Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: SIGGRAPH, pp. 327–340 (2001) Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: SIGGRAPH, pp. 327–340 (2001)
13.
Zurück zum Zitat Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-based synthesis. SIGGRAPH 24(3), 795–802 (2005)CrossRef Kwatra, V., Essa, I., Bobick, A., Kwatra, N.: Texture optimization for example-based synthesis. SIGGRAPH 24(3), 795–802 (2005)CrossRef
14.
Zurück zum Zitat Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graph. 22(3), 277–286 (2003)CrossRef Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts. ACM Trans. Graph. 22(3), 277–286 (2003)CrossRef
16.
Zurück zum Zitat Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015) Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)
17.
Zurück zum Zitat Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: CVPR (2015) Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: CVPR (2015)
19.
Zurück zum Zitat Nguyen, A.M., Yosinski, J., Clune, J.: Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks. CoRR abs/1602.03616 (2016). http://arxiv.org/abs/1602.03616 Nguyen, A.M., Yosinski, J., Clune, J.: Multifaceted feature visualization: uncovering the different types of features learned by each neuron in deep neural networks. CoRR abs/1602.03616 (2016). http://​arxiv.​org/​abs/​1602.​03616
25.
Zurück zum Zitat Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014) Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part I. LNCS, vol. 8689, pp. 818–833. Springer, Heidelberg (2014)
Metadaten
Titel
Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks
verfasst von
Chuan Li
Michael Wand
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-46487-9_43