Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. Introduction

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The investigation of the strategies of human motor control in grasping task represents a relevant topic in neuroscience with applications in robotics. Such an investigation requires the development and the exploitation of sensing tools and devices, which are able to record all the necessary information, and for this purpose, new custom devices are developed and exploited. The ambitious goal of this work is twofold: (1) to advance the state of the art on human strategies in manipulation tasks and provide tools to assess rehabilitation procedure and (2) to investigate human strategies for impedance control that can be used for human robot interaction and control of myoelectric prosthesis. Although the goal complexity requires many efforts, this book achieved tangible and original contributions that are suitable for robotic/prosthetic and human motor control studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.P. Kuhtz-Buschbeck, H.H. Ehrsson, H. Forssberg, Human brain activity in the control of fine static precision grip forces: an fmri study. Eur. J. Neurosci. 14(2), 382–390 (2001)CrossRef J.P. Kuhtz-Buschbeck, H.H. Ehrsson, H. Forssberg, Human brain activity in the control of fine static precision grip forces: an fmri study. Eur. J. Neurosci. 14(2), 382–390 (2001)CrossRef
2.
Zurück zum Zitat R.S. Johansson, J.R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009)CrossRef R.S. Johansson, J.R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10(5), 345–359 (2009)CrossRef
3.
Zurück zum Zitat D.M. Wolpert, J. Diedrichsen, J.R. Flanagan, Principles of sensorimotor learning’. Nat. Rev. Neurosci. 12(12), 739–751 (2011) D.M. Wolpert, J. Diedrichsen, J.R. Flanagan, Principles of sensorimotor learning’. Nat. Rev. Neurosci. 12(12), 739–751 (2011)
4.
Zurück zum Zitat M. Santello, M. Flanders, J.F. Soechting, Postural hand synergies for tool use. J. Neurosci. 18(23), 10 105–10 115 (1998) M. Santello, M. Flanders, J.F. Soechting, Postural hand synergies for tool use. J. Neurosci. 18(23), 10 105–10 115 (1998)
5.
Zurück zum Zitat M. Gabiccini, A. Bicchi, On the role of hand synergies in the optimal choice of grasping forces, in Robotics Science and Systems (2010) M. Gabiccini, A. Bicchi, On the role of hand synergies in the optimal choice of grasping forces, in Robotics Science and Systems (2010)
6.
Zurück zum Zitat A. Bicchi, M. Gabiccini, M. Santello, Modelling natural and artificial hands with sinergie. Philos. Trans. R. Soc. B 366, 3153–3161 (2011)CrossRef A. Bicchi, M. Gabiccini, M. Santello, Modelling natural and artificial hands with sinergie. Philos. Trans. R. Soc. B 366, 3153–3161 (2011)CrossRef
7.
Zurück zum Zitat M.G. Catalano, G. Grioli, A. Serio, E. Farnioli, C. Piazza, A. Bicchi, Adaptive synergies for a humanoid robot hand, in IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan (in Press) M.G. Catalano, G. Grioli, A. Serio, E. Farnioli, C. Piazza, A. Bicchi, Adaptive synergies for a humanoid robot hand, in IEEE-RAS International Conference on Humanoid Robots, Osaka, Japan (in Press)
8.
Zurück zum Zitat V.M. Zatsiorsky, M.L. Latash, Multifinger prehension: an overview. J. Motor Behav. 40(5), 446–476 (2008)CrossRef V.M. Zatsiorsky, M.L. Latash, Multifinger prehension: an overview. J. Motor Behav. 40(5), 446–476 (2008)CrossRef
9.
Zurück zum Zitat J.R. Flanagan, M.K. Burstedt, R.S. Johansson, Control of fingertip forces in multidigit manipulation. J. Neurophysiol. 81(4), 1706–1717 (1999) J.R. Flanagan, M.K. Burstedt, R.S. Johansson, Control of fingertip forces in multidigit manipulation. J. Neurophysiol. 81(4), 1706–1717 (1999)
10.
Zurück zum Zitat G. Baud-Bovy, J.F. Soechting, Two virtual fingers in the control of the tripod grasp. J. Neurophysiol. 86(2), 604–615 (2001) G. Baud-Bovy, J.F. Soechting, Two virtual fingers in the control of the tripod grasp. J. Neurophysiol. 86(2), 604–615 (2001)
11.
Zurück zum Zitat G. Baud-Bovy, J.F. Soechting, Factors influencing variability in load forces in a tripod grasp. Exp. Brain Res. 143(1), 57–66 (2002)CrossRef G. Baud-Bovy, J.F. Soechting, Factors influencing variability in load forces in a tripod grasp. Exp. Brain Res. 143(1), 57–66 (2002)CrossRef
12.
Zurück zum Zitat S.A. Winges, S.E. Eonta, J.F. Soechting, M. Flanders, Effects of object compliance on three-digit grasping. J. Neurophysiol. 101(5), 2447–2458 (2009)CrossRef S.A. Winges, S.E. Eonta, J.F. Soechting, M. Flanders, Effects of object compliance on three-digit grasping. J. Neurophysiol. 101(5), 2447–2458 (2009)CrossRef
13.
Zurück zum Zitat M. Santello, J.F. Soechting, Force synergies for multifingered grasping. Exp. Brain Res. 133(4), 457–467 (2000)CrossRef M. Santello, J.F. Soechting, Force synergies for multifingered grasping. Exp. Brain Res. 133(4), 457–467 (2000)CrossRef
14.
Zurück zum Zitat W. Zhang, A.M. Gordon, Q. Fu, M. Santello, Manipulation after object rotation reveals independent sensorimotor memory representations of digit positions and forces. J. Neurophysiol. 103(6), 2953–2964 (2010)CrossRef W. Zhang, A.M. Gordon, Q. Fu, M. Santello, Manipulation after object rotation reveals independent sensorimotor memory representations of digit positions and forces. J. Neurophysiol. 103(6), 2953–2964 (2010)CrossRef
15.
Zurück zum Zitat Q. Fu, Z. Hasan, M. Santello, Transfer of learned manipulation following changes in degrees of freedom. J. Neurosci. 31(38), 13 576–13 584 (2011)CrossRef Q. Fu, Z. Hasan, M. Santello, Transfer of learned manipulation following changes in degrees of freedom. J. Neurosci. 31(38), 13 576–13 584 (2011)CrossRef
16.
Zurück zum Zitat L. Dipietro, A.M. Sabatini, P. Dario, A survey of glovebased systems and their applications. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 38(4), 461–482 (2008)CrossRef L. Dipietro, A.M. Sabatini, P. Dario, A survey of glovebased systems and their applications. IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. 38(4), 461–482 (2008)CrossRef
17.
Zurück zum Zitat T.R. Grieve, J.M. Hollerbach, S.A. Mascaro, Force prediction by fingernail imaging using active appearance models, in World Haptics Conference (WHC), 2013 (IEEE, 2013), pp. 181–186 T.R. Grieve, J.M. Hollerbach, S.A. Mascaro, Force prediction by fingernail imaging using active appearance models, in World Haptics Conference (WHC), 2013 (IEEE, 2013), pp. 181–186
18.
Zurück zum Zitat P.S. Lum, C.G. Burgar, P.C. Shor, M. Majmundar, M.V. der Loos, Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upperlimb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002)CrossRef P.S. Lum, C.G. Burgar, P.C. Shor, M. Majmundar, M.V. der Loos, Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upperlimb motor function after stroke. Arch. Phys. Med. Rehabil. 83(7), 952–959 (2002)CrossRef
19.
Zurück zum Zitat H.I. Krebs, B. Volpe, M. Ferraro, S. Fasoli, J. Palazzolo, B. Rohrer, L. Edelstein, N. Hogan, Robot-aided neurorehabilitation: from evidence-based to science-based rehabilitation. Top. Stroke Rehabil. 8(4), 54–70 (2002)CrossRef H.I. Krebs, B. Volpe, M. Ferraro, S. Fasoli, J. Palazzolo, B. Rohrer, L. Edelstein, N. Hogan, Robot-aided neurorehabilitation: from evidence-based to science-based rehabilitation. Top. Stroke Rehabil. 8(4), 54–70 (2002)CrossRef
20.
Zurück zum Zitat F. Carpi, G. Frediani, C. Gerboni, J. Gemignani, D. De Rossi, Enabling variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers. Med. Eng. Phys. 36(2), 205–211 (2014)CrossRef F. Carpi, G. Frediani, C. Gerboni, J. Gemignani, D. De Rossi, Enabling variable-stiffness hand rehabilitation orthoses with dielectric elastomer transducers. Med. Eng. Phys. 36(2), 205–211 (2014)CrossRef
21.
Zurück zum Zitat J.-C. Metzger, O. Lambercy, R. Gassert, High-fidelity rendering of virtual objects with the rehapticknob-novel avenues in robot-assisted rehabilitation of hand function, in Haptics Symposium (haptics), 2012 (IEEE, 2012), pp. 51–56 J.-C. Metzger, O. Lambercy, R. Gassert, High-fidelity rendering of virtual objects with the rehapticknob-novel avenues in robot-assisted rehabilitation of hand function, in Haptics Symposium (haptics), 2012 (IEEE, 2012), pp. 51–56
22.
Zurück zum Zitat D.R. Humphrey, D.J. Reed, Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles. Adv. Neurol. 39, 347–372 (1983) D.R. Humphrey, D.J. Reed, Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles. Adv. Neurol. 39, 347–372 (1983)
23.
Zurück zum Zitat A.E. Fiorilla, F. Nori, L. Masia, G. Sandini, Finger impedance evaluation by means of hand exoskeleton. Ann. Biomed. Eng. 39(12), 2945–2954 (2011)CrossRef A.E. Fiorilla, F. Nori, L. Masia, G. Sandini, Finger impedance evaluation by means of hand exoskeleton. Ann. Biomed. Eng. 39(12), 2945–2954 (2011)CrossRef
24.
Zurück zum Zitat A.Z. Hajian, R.D. Howe, Identification of the mechanical impedance at the human finger tip. J. Biomech. Eng. 119(1), 109–114 (1997)CrossRef A.Z. Hajian, R.D. Howe, Identification of the mechanical impedance at the human finger tip. J. Biomech. Eng. 119(1), 109–114 (1997)CrossRef
25.
Zurück zum Zitat H. Hoppner, D. Lakatos, H. Urbanek, C. Castellini, P. van der Smagt, The grasp perturbator: calibrating human grasp stiffness during a graded force task, in 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp. 3312–3316 H. Hoppner, D. Lakatos, H. Urbanek, C. Castellini, P. van der Smagt, The grasp perturbator: calibrating human grasp stiffness during a graded force task, in 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp. 3312–3316
26.
Zurück zum Zitat T.E. Milner, D.W. Franklin, Characterization of multijoint finger stiffness: Dependence on finger posture and force direction. IEEE Trans. Biomed. Eng. 45(11), 1363–1375 (1998)CrossRef T.E. Milner, D.W. Franklin, Characterization of multijoint finger stiffness: Dependence on finger posture and force direction. IEEE Trans. Biomed. Eng. 45(11), 1363–1375 (1998)CrossRef
27.
Zurück zum Zitat P. Buttolo, Characterization of human pen grasp with haptic displays, Ph.D. thesis, Citeseer (1996) P. Buttolo, Characterization of human pen grasp with haptic displays, Ph.D. thesis, Citeseer (1996)
Metadaten
Titel
Introduction
verfasst von
Alessandro Altobelli
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-47087-0_1

Neuer Inhalt