Skip to main content

Application of Practical Nitrate Sensor Based on Electrochemical Impedance Spectroscopy

  • Chapter
  • First Online:
Sensors for Everyday Life

Part of the book series: Smart Sensors, Measurement and Instrumentation ((SSMI,volume 23))

Abstract

Nitrate is a naturally occurring ionic compound that is part of nature’s nitrogen cycle. Nitrates are readily lost to ground and surface water as a result of intensive agriculture, disposal of human and animal sewage and industrial wastes and the impact of elevated nitrate concentrations on water quality, has been identified as a critical issue facing New Zealand’s future. It is therefore, highly desirable to monitor water quality to facilitate regional councils and central governments to understand trends in concentrations and to develop a healthy water management policy. Presently, water quality managers follow the traditional measurement systems that involve physically sampling water from remote sites and laboratory-based testing. These methods are expensive, require trained people to analyze the data and produce a lot of chemical waste. Due to the time and labor required, surface samples are often only collected once per month and these risks missing significant trends in nitrate loss. Therefore, it is of utmost important to develop low-cost, robust embedded sensor nodes to detect the concentration of individual nutrients like nitrate and nitrite in surface and ground water. The interdigital capacitive sensor has been used to measure the different nitrate concentration. The sensor used to measure also the temperature and humidity of the samples. The results have shown that the sensor has high potential in a different application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fresh Water Environment, http://www.mfe.govt.nz/publications/environmental-reporting/environment-aotearoa-2015-fresh-water/overview. Accessed 17 May 2016

  2. Agricultural Production Statistics: June 2015, http://www.stats.govt.nz/browse_for_stats/industry_sectors/agriculture-horticulture-forestry/AgriculturalProduction_HOTPJun15prov.aspx. Accessed 17 May 2016

  3. G.C. Brandao, G.D. Matos, R.N. Pereira, S.L. Ferreira, Development of a simple method for the determination of nitrite and nitrate in groundwater by high-resolution continuum source electrothermal molecular absorption spectrometry. Anal. Chim. Acta 806, 101–106 (2014)

    Article  Google Scholar 

  4. J.A. Camargo, Á. Alonso, Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ. Int. 32, 831–849 (2006)

    Article  Google Scholar 

  5. A. Ayala, L. Leal, L. Ferrer, V. Cerdà, Multiparametric automated system for sulfate, nitrite and nitrate monitoring in drinking water and wastewater based on sequential injection analysis. Microchem. J. 100, 55–60 (2012)

    Article  Google Scholar 

  6. M.J. Moorcroft, J. Davis, R.G. Compton, Detection and determination of nitrate and nitrite: a review. Talanta 54, 785–803 (2001)

    Article  Google Scholar 

  7. C.L. Pasquali, A. Gallego-Picó, P.F. Hernando, M. Velasco, J.D. Alegría, Two rapid and sensitive automated methods for the determination of nitrite and nitrate in soil samples. Microchem. J. 94, 79–82 (2010)

    Article  Google Scholar 

  8. Z. Moldovan, Kinetic spectrophotometric determination of nitrite with Tropaeolin 00-Bromate System. Anal. Lett. 43, 1344–1354 (2010)

    Article  Google Scholar 

  9. Table of Regulated Drinking Water Contaminants, https://www.epa.gov/your-drinking-water/table-regulated-drinking-water-contaminants. Accessed 17 May 2016

  10. D.C. Siu, A. Henshall, Ion chromatographic determination of nitrate and nitrite in meat products. J. Chromatogr. A 804, 157–160 (1998)

    Article  Google Scholar 

  11. P. Niedzielski, I. Kurzyca, J. Siepak, A new tool for inorganic nitrogen speciation study: Simultaneous determination of ammonium ion, nitrite and nitrate by ion chromatography with post-column ammonium derivatization by Nessler reagent and diode-array detection in rain water samples. Anal. Chim. Acta 577, 220–224 (2006)

    Article  Google Scholar 

  12. E. Pagliano, M. Onor, E. Pitzalis, Z. Mester, R. Sturgeon, A. D’Ulivo, Quantification of nitrite and nitrate in seawater by triethyloxonium tetrafluoroborate derivatization—Headspace SPME GC–MS. Talanta 85, 2511–2516 (2011)

    Article  Google Scholar 

  13. N. Öztekin, M.S. Nutku, F.B. Erim, Simultaneous determination of nitrite and nitrate in meat products and vegetables by capillary electrophoresis. Food Chem. 76, 103–106 (2002)

    Article  Google Scholar 

  14. F. Manea, A. Remes, C. Radovan, R. Pode, S. Picken, J. Schoonman, Simultaneous electrochemical determination of nitrate and nitrite in aqueous solution using Ag-doped zeolite-expanded graphite-epoxy electrode. Talanta 83, 66–71 (2010)

    Article  Google Scholar 

  15. A. Serra, S. Jorge, C. Silveira, J. Moura, E. Jubete, E. Ochoteco et al., Cooperative use of cytochrome cd 1 nitrite reductase and its redox partner cytochrome c 552 to improve the selectivity of nitrite biosensing. Anal. Chim. Acta 693, 41–46 (2011)

    Article  Google Scholar 

  16. C. Xia, C. Xiaolan, W. Ning, G. Lin, Hierarchical CuO nanochains: synthesis and their electrocatalytic determination of nitrite. Anal. Chim. Acta 691, 43–47 (2011)

    Article  Google Scholar 

  17. F. Hu, S. Chen, C. Wang, R. Yuan, D. Yuan, C. Wang, Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal. Chim. Acta 724, 40–46 (2012)

    Article  Google Scholar 

  18. M. Sohail, R. De Marco, K. Lamb, E. Bakker, Thin layer coulometric determination of nitrate in fresh waters. Anal. Chim. Acta 744, 39–44 (2012)

    Article  Google Scholar 

  19. J. Chen, H. Chen, C. Zhou, J. Xu, F. Yuan, L. Wang, An efficient upconversion luminescence energy transfer system for determination of trace amounts of nitrite based on NaYF 4: Yb 3+, Er 3+ as donor. Anal. Chim. Acta 713, 111–114 (2012)

    Article  Google Scholar 

  20. Z.-T. Jiang, Y.-X. Guo, R. Li, Spectrophotometric determination of trace nitrite with brilliant cresyl blue using β-cyclodextrin as a sensitizer. Food Anal. Methods 3, 47–53 (2010)

    Article  Google Scholar 

  21. M. Pandurangappa, Y. Venkataramanappa, Quantification of nitrite/nitrate in food stuff samples using 2-aminobenzoic acid as a new amine in diazocoupling reaction. Food Anal. Methods 4, 90–99 (2011)

    Article  Google Scholar 

  22. N. Cabaleiro, I. De La Calle, S. Gil, F. Pena, M. Costas, C. Bendicho et al., Simultaneous ultrasound-assisted emulsification–derivatization as a simple and miniaturized sample preparation method for determination of nitrite in cosmetic samples by microvolume UV–vis spectrophotomety. Talanta 83, 386–390 (2010)

    Article  Google Scholar 

  23. H. Filik, D. Giray, B. Ceylan, R. Apak, A novel fiber optic spectrophotometric determination of nitrite using Safranin O and cloud point extraction. Talanta 85, 1818–1824 (2011)

    Article  Google Scholar 

  24. M.D. Patey, E.P. Achterberg, M.J. Rijkenberg, P.J. Statham, M. Mowlem, Interferences in the analysis of nanomolar concentrations of nitrate and phosphate in oceanic waters. Anal. Chim. Acta 673, 109–116 (2010)

    Article  Google Scholar 

  25. S. Senra-Ferreiro, F. Pena-Pereira, I. Lavilla, C. Bendicho, Griess micro-assay for the determination of nitrite by combining fibre optics-based cuvetteless UV–Vis micro-spectrophotometry with liquid-phase microextraction. Anal. Chim. Acta 668, 195–200 (2010)

    Article  Google Scholar 

  26. B.S. Gentle, P.S. Ellis, M.R. Grace, I.D. McKelvie, Flow analysis methods for the direct ultra-violet spectrophotometric measurement of nitrate and total nitrogen in freshwaters. Anal. Chim. Acta 704, 116–122 (2011)

    Article  Google Scholar 

  27. M. Noroozifar, M. Khorasani-Motlagh, A. Taheri, M. Homayoonfard, Application of manganese (IV) dioxide microcolumn for determination and speciation of nitrite and nitrate using a flow injection analysis–flame atomic absorption spectrometry system. Talanta 71, 359–364 (2007)

    Article  Google Scholar 

  28. A.S. Abu-Abed, R.G. Lindquist, Capacitive interdigital sensor with inhomogeneous nematic liquid crystal film. Progress In Electromagnetics Research B 7, 75–87 (2008)

    Article  Google Scholar 

  29. A.V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Du, M. Zahn, Interdigital sensors and transducers. Proc. IEEE 92, 808–845 (2004)

    Article  Google Scholar 

  30. F. Lisdat, D. Schäfer, The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 391, 1555–1567 (2008)

    Article  Google Scholar 

  31. Y. Chen, C. Zhu, M. Cao, T. Wang, Photoresponse of SnO2 nanobelts grown in situ on interdigital electrodes. Nanotechnology 18, 285502 (2007)

    Article  Google Scholar 

  32. A.M. Syaifudin, K. Jayasundera, S. Mukhopadhyay, A low cost novel sensing system for detection of dangerous marine biotoxins in seafood. Sens. Actuators B: Chem. 137, 67–75 (2009)

    Article  Google Scholar 

  33. S. Mukhopadhyay, P. Yu, Electromagnetic field computation using COMSOL Multiphysics to evaluate the performance of novel interdigital sensors, in Applied Electromagnetics Conference (AEMC), 2009, pp. 1–4

    Google Scholar 

  34. M. Yunus, S. Mukhopadhyay, K. Jayasundera, A novel planar interdigital sensor for environmental monitoring, in Sensors, 2009 IEEE, 2009, pp. 105–110

    Google Scholar 

  35. H. Arwin, Application of ellipsometry techniques to biological materials. Thin Solid Films 519, 2589–2592 (2011)

    Article  Google Scholar 

  36. Y. Yang, G. Chiesura, G. Luyckx, T. Vervust, F. Bossuyt, J. Vanfleteren et al., In situ on-line cure monitoring of composites by embedded interdigital sensor, in 16th European Conference on Composite Materials (ECCM-16), 2014

    Google Scholar 

  37. A.I. Zia, A.M. Syaifudin, S. Mukhopadhyay, P. Yu, I. Al-Bahadly, C.P. Gooneratne et al., Electrochemical impedance spectroscopy based MEMS sensors for phthalates detection in water and juices, in Journal of Physics: Conference Series, 2013, p. 012026

    Google Scholar 

  38. A.I. Zia, S.C. Mukhopadhyay, P.-L. Yu, I. Al-Bahadly, C.P. Gooneratne, J. Kosel, Rapid and molecular selective electrochemical sensing of phthalates in aqueous solution. Biosens. Bioelectron. 67, 342–349 (2015)

    Article  Google Scholar 

  39. A. Zia, S. Mukhopadhyay, I. Al-Bahadly, P. Yu, C.P. Gooneratne, J. Kosel, Introducing molecular selectivity in rapid impedimetric sensing of phthalates, in 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, 2014, pp. 838–843

    Google Scholar 

  40. A. Syaifudin, K. Jayasundera, S. Mukhopadhyay, A novel planar interdigital sensor based sensing and instrumentation for detection of dangerous contaminated chemical in seafood, in Instrumentation and Measurement Technology Conference, 2009. I2MTC’09. IEEE, 2009, pp. 701–706

    Google Scholar 

  41. J. Fischer, H. Dejmkova, J. Barek, Electrochemistry of pesticides and its analytical applications. Curr. Org. Chem. 15, 2923–2935 (2011)

    Article  Google Scholar 

  42. M. Khafaji, S. Shahrokhian, M. Ghalkhani, Electrochemistry of Levo-Thyroxin on Edge-Plane pyrolytic graphite electrode: application to sensitive analytical determinations. Electroanalysis 23, 1875–1880 (2011)

    Article  Google Scholar 

  43. L. Li, F. Yang, J. Yu, X. Wang, L. Zhang, Y. Chen et al., In situ growth of ZnO nanowires on Zn comb-shaped interdigitating electrodes and their photosensitive and gas-sensing characteristics. Mater. Res. Bull. 47, 3971–3975 (2012)

    Article  Google Scholar 

  44. M. Dhull, A. Arora, Design of mems based microheater for enhanced efficiency of gas sensors. J. Therm. Eng. Appl. 2, 16–21 (2015)

    Google Scholar 

  45. S.C. Mukhopadhyay, C.P. Gooneratne, A novel planar-type biosensor for noninvasive meat inspection. Sens. J. IEEE 7, 1340–1346 (2007)

    Article  Google Scholar 

  46. M.S.A. Rahman, S.C. Mukhopadhyay, P.-L. Yu, J. Goicoechea, I.R. Matias, C.P. Gooneratne et al., Detection of bacterial endotoxin in food: new planar interdigital sensors based approach. J. Food Eng. 114, 346–360 (2013)

    Article  Google Scholar 

  47. C. Xhoffer, K. Van den Bergh, H. Dillen, Electrochemistry: a powerful analytical tool in steel research. Electrochim. Acta 49, 2825–2831 (2004)

    Article  Google Scholar 

  48. C.V. Vidal, A.I. Muñoz, Effect of physico-chemical properties of simulated body fluids on the electrochemical behaviour of CoCrMo alloy. Electrochim. Acta 56, 8239–8248 (2011)

    Article  Google Scholar 

  49. X. Li, K. Toyoda, I. Ihara, Coagulation process of soymilk characterized by electrical impedance spectroscopy. J. Food Eng. 105, 563–568 (2011)

    Article  Google Scholar 

  50. C. Liu, Q. Bi, A. Leyland, A. Matthews, An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviour. Corros. Sci. 45, 1257–1273 (2003)

    Article  Google Scholar 

  51. A. Ghasemi, V. Raja, C. Blawert, W. Dietzel, K. Kainer, Study of the structure and corrosion behavior of PEO coatings on AM50 magnesium alloy by electrochemical impedance spectroscopy. Surf. Coat. Technol. 202, 3513–3518 (2008)

    Article  Google Scholar 

  52. R.M. Souto, M.a.M. Laz, R.L. Reis, Degradation characteristics of hydroxyapatite coatings on orthopaedic TiAlV in simulated physiological media investigated by electrochemical impedance spectroscopy. Biomaterials, 24, 4213–4221 (2003)

    Google Scholar 

  53. D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, D. Sauer, Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. J. Power Sources 196, 5334–5341 (2011)

    Article  Google Scholar 

  54. B.-Y. Chang, S.-M. Park, Electrochemical impedance spectroscopy. Ann. Rev. Anal. Chem. 3, 207–229 (2010)

    Article  Google Scholar 

  55. G. Instruments, Basics of electrochemical impedance spectroscopy, G. Instruments, Complex impedance in Corrosion, pp. 1–30 (2007)

    Google Scholar 

  56. I.I. Suni, Impedance methods for electrochemical sensors using nanomaterials. TrAC Trends Anal. Chem. 27, 604–611 (2008)

    Article  Google Scholar 

  57. A. Zia, Smart Electrochemical Sensing System For the Real time Detection of Endocrine Disrupting Compunds and Hormones

    Google Scholar 

  58. J.R. Macdonald, E. Barsoukov, Impedance spectroscopy: theory, experiment, and applications. History 1, 8 (2005)

    Google Scholar 

  59. J.E.B. Randles, Kinetics of rapid electrode reactions. Discuss. Faraday Soc. 1, 11–19 (1947)

    Article  Google Scholar 

  60. M.S.A. Rahman, S.C. Mukhopadhyay, P.-L. Yu, Novel Planar Interdigital Sensors, in Novel Sensors for Food Inspection: Modelling, Fabrication and Experimentation, ed: (Springer, 2014), pp. 11–35

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alahi, M.E.E., Li, X., Mukhopadhyay, S., Burkitt, L. (2017). Application of Practical Nitrate Sensor Based on Electrochemical Impedance Spectroscopy. In: Mukhopadhyay, S., Postolache, O., Jayasundera, K., Swain, A. (eds) Sensors for Everyday Life. Smart Sensors, Measurement and Instrumentation, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-47322-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47322-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47321-5

  • Online ISBN: 978-3-319-47322-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics