Skip to main content

Environmental Impact Measurements: Tool and Techniques

Book cover Handbook of Ecomaterials

Abstract

The ecosystem provides various services such as regulation, support, provisions and culture to living beings on the earth. The productivity of a system is greatly affected by the health of the different components and the level of contamination in it. Increasing industrialization and reduced sources of natural resources for safe use by the growing population leads to poor productivity of ecosystems. Environmental impact assessment is a current need for the sustainable survival of human being on earth. The increasing industrialization and population, as well as mismanagement of natural resources, are creating environmental threats. Nowadays people are more worried about natural calamities and the substantial reduction of environmental quality worldwide. Many techniques are available to assess and determine environmental factor intensity and quality at any given time. Therefore, the use of modern technologies in this field can be a viable option to warn of natural calamities and to save or effectively manage human life and natural resources. Most developing countries today need to execute environmental policy and effective guidelines, and provide the infrastructure, to accurately assess environmental effects on natural resources and the ecosystem’s different biogeochemical cycles. Spreading awareness among people through governments and nongovernmental organizations also has a valuable place in combating the incidence of natural calamities and the deterioration of environmental health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. IAIA (1999) Principle of environmental impact assessment best practice. International Association for Impact Assessment- 1999. Archived from the original on 19/02/2018

    Google Scholar 

  2. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Soil and its role in the ecosystem. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 11–36. https://doi.org/10.1007/978-981-10-4274-4_2

    Chapter  Google Scholar 

  3. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Impacts of soil pollution and their assessment. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 37–73. https://doi.org/10.1007/978-981-10-4274-4_3

    Chapter  Google Scholar 

  4. IAIA (1994) Impact assessment interorganisational committee on guidelines and principles. in: guidelines and principles for social impact assessment. Environ Impact Assess 12(2):107–152

    Article  Google Scholar 

  5. Meena BP, Tiwari PK, Dotaniya ML, Shirale AO, Ramesh K (2017) Precision nutrient management techniques for enhancing nutrient use efficiency. In: Elanchezhian R, Biswas AK, Ramesh K, Patra AK (eds) Advances in nutrient dynamics in soil plant system for improving nutrient use efficiency. New India Publishing Agency, New Delhi, pp 61–74

    Google Scholar 

  6. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Agriculture, soil and environment. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 1–9. https://doi.org/10.1007/978-981-10-4274-4_1

    Chapter  Google Scholar 

  7. Meena BL, Meena RL, Kanwat M, Kumar A, Dotaniya ML (2017) Impact of climate change under coastal ecosystem & adoption strategies. In: Kumar PS, Kanwat M, Meena PD, Kumar V, Alone RA (eds) Climate change & sustainable agriculture. New India Publishing Agency, New Delhi, pp 55–66

    Google Scholar 

  8. Dotaniya ML (2015) Impact of rising atmospheric CO2 concentration on plant and soil process. In: Mohanty M, Sinha NK, Hati KM, Chaudhary RS, Patra AK (eds) Crop growth simulation modelling and climate change. Scientific Publisher, Jodhpur, pp 69–86

    Google Scholar 

  9. Kundu S, Dotaniya ML, Lenka S (2013) Carbon sequestration in Indian agriculture. In: Lenka S, Lenka NK, Kundu S, Rao AS (eds) Climate change and natural resources management. New India Publishing Agency, New Delhi, pp 269–289

    Google Scholar 

  10. Dotaniya ML, Meena VD, Lata M, Meena BL (2017) Climate change impact on agriculture: adaptation strategies. In: Kumar PS, Kanwat M, Meena PD, Kumar V, Alone RA (eds) Climate change & sustainable agriculture. New India Publishing Agency, New Delhi, pp 27–38

    Google Scholar 

  11. Mandal A, Radha TK, Neenu S (2013) Impact of climate change on rhizosphere microbial activity and nutrient cycling. In: Lenka S, Lenka NK, Kundu S, Rao AS (eds) Climate change and natural resource management. New India Publishing Agency, New Delhi, pp 93–116

    Google Scholar 

  12. Dotaniya ML, Meena VD, Kumar K, Meena BP, Jat SL, Lata M, Ram A, Dotaniya CK, Chari MS (2016) Impact of biosolids on agriculture and biodiversity. Today and Tomorrow’s Printer and Publisher, New Delhi, pp 11–20

    Google Scholar 

  13. Lenka S, Lenka NK, Kundu S, Rao AS (2013) Climate change and natural resource management. New India Publishing Agency, New Delhi

    Google Scholar 

  14. Dotaniya ML, Dotaniya CK, Sanwal RC, Meena HM (2018) CO2 sequestration and transformation potential of agricultural system. In: MartĂ­nez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer. https://doi.org/10.1007/978-3-319-48281-1_87-1

  15. Lenka S, Lenka NK, Chaudhary RS (2013) Climate change mitigation options in agriculture. In: Climate change and natural resource management. New India Publishing Agency, New Delhi, pp 195–214

    Google Scholar 

  16. Sharma PK, Sarkar D (2002) Soil survey and mapping. In: Sekhon GS, Chhonkar PK, Das DK, Goswami, Narayanasamy, Poonia SR, Rattan RK, Sehgal J (eds) Fundamental of soil science. Indian Soc Soil Sci, New Delhi, pp 55–70

    Google Scholar 

  17. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Major inorganic pollutants affecting soil and crop quality. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 75–104. https://doi.org/10.1007/978-981-10-4274-4

    Chapter  Google Scholar 

  18. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Organic pollutants. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 105–135. https://doi.org/10.1007/978-981-10-4274-5

    Chapter  Google Scholar 

  19. ESF (2018) Ecosystem services framework. http://www.ecosystemservicesseq.com.au/ecosystem-functions.html, assessed on 20 Feb 2018

  20. IPCC (2001) In: Watson RT, the Core Writing Team (eds) Climate change 2001: synthesis report. Cambridge University Press, Cambridge, UK

    Google Scholar 

  21. Malherbe L (2001) Designing a contaminated soil sampling strategy for human health risk assessment. Eurolab/Eurachem International workshop “Sampling”, Lisbonne

    Google Scholar 

  22. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Collection and processing of polluted soil for analysis. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 137–153. https://doi.org/10.1007/978-981-10-4274-6

    Chapter  Google Scholar 

  23. Meena BP, Shirale AO, Dotaniya ML, Jha P, Meena AL, Biswas AK, Patra AK (2016) Conservation agriculture: a new paradigm for improving input use efficiency and crop productivity. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture conservation agriculture- an approach to combat climate change in Indian Himalaya. Springer, pp 39–69

    Chapter  Google Scholar 

  24. Lenka S, Rajendiran, Coumar MV, Dotaniya ML, Saha JK (2016) Impacts of fertilizers use on environmental quality. In national seminar on environmental concern for fertilizer use in future” at Bidhan Chandra Krishi Viswavidyalaya, Kalyani on February 26, 2016

    Google Scholar 

  25. Meena VD, Dotaniya ML (2017) Climate change, water scarcity and sustainable agriculture for food security. In: Kumar PS, Kanwat M, Meena PD, Kumar V, Alone RA (eds) Climate change & sustainable agriculture. New India Publishing Agency, New Delhi, pp 123–142

    Google Scholar 

  26. Singh D, Chhonkar PK, Dwivedi BS (2005) Manual on soil, plant and water analysis. Westville, New Delhi

    Google Scholar 

  27. Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Pvt Ltd, New Delhi, pp 38–56

    Google Scholar 

  28. Bouyoucos GL (1962) Hydrometer method improved for making particle size analysis of soils. Agron J 54:464

    Article  Google Scholar 

  29. Walkley AJ, Black IA (1934) An examination of the Degtjaff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  Google Scholar 

  30. Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Depart Agric Circ No 939, Agric Depart, US

    Google Scholar 

  31. Bray RH, Kurtz LT (1945) Determination of total, organic and available form of phosphorus in soils. Soil Sci 59:39–45

    Article  Google Scholar 

  32. Subbiah BV, Asija GL (1956) A rapid procedure for the determination of available nitrogen in soils. Curr Sci 25:259–260

    Google Scholar 

  33. Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese and copper. Soil SciSoc Am J 42:421–448

    Article  Google Scholar 

  34. Casida LE, Klein DA, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371–376

    Article  Google Scholar 

  35. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of phosphatase activity. Soil Biol Biochem 1:301–307

    Article  Google Scholar 

  36. Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem 33:943–951

    Article  Google Scholar 

  37. Kushwah SK, Dotaniya ML, Upadhyay AK, Rajendiran S, Coumar MV, Kundu S, Rao AS (2014) Assessing carbon and nitrogen partition in kharif crops for their carbon sequestration potential. Natl Acad Sci Lett 37(3):213–217

    Article  Google Scholar 

  38. Hanway JJ, Heidel H (1952) soil analysis methods as used in Iowa State College Soil Testing Laboratory. Iowa Agric 57:1–31

    Google Scholar 

  39. Gupta UC (1967) A simplified method for determining hot water soluble boron in podzol soils. Soil Sci 103:424–428

    Article  Google Scholar 

  40. Dotaniya ML, Rajendiran S, Coumar MV, Meena VD, Saha JK, Kundu S, Kumar A, Patra AK (2017) Interactive effect of cadmium and zinc on chromium uptake in spinach grown on Vertisol of Central India. Int J Environ Sci Technol 15(2):441–448

    Article  Google Scholar 

  41. Fang S, Liu J, Liu D, Xie B (2010) Enzymatic activity and nutrient availability in the rhizosphere of poplar plantations treated with fresh grass mulch. Soil Sci Plant Nutr 56(3):483–491

    Article  Google Scholar 

  42. Pankhurst CE, Hawke BG, McDonald HJ, Kirkby CA, Buckerfield JC, Michelsen P, O’Brien KA, Gupta VVSR, Doube BM (1995) Evaluation of soil biological properties as potential bioindicators of soil health. Aus J Exp Agric 35:1015–1028

    Article  Google Scholar 

  43. Dotaniya ML (2013) Impact of various crop residue management practices on nutrient uptake by rice-wheat cropping system. Curr Adv Agric Sci 5(2):269–271

    Google Scholar 

  44. Dotaniya ML, Datta SC (2014) Impact of bagasse and press mud on availability and fixation capacity of phosphorus in an Inceptisol of north India. Sugar Tech 16(1):109–112

    Article  Google Scholar 

  45. Dotaniya ML, Datta SC, Biswas DR, Dotaniya CK, Meena BL, Rajendiran S, Regar KL, Lata M (2016) Use of sugarcane industrial byproducts for improving sugarcane productivity and soil health-a review. Int J Recycl Org Waste Agric 5(3):185–194

    Article  Google Scholar 

  46. Dotaniya ML, Datta SC, Biswas DR, Kumar K (2014) Effect of organic sources on phosphorus fractions and available phosphorus in Typic Haplustept. J Indian Soc Soil Sci 62(1):80–83

    Google Scholar 

  47. Dotaniya ML, Kushwah SK, Rajendiran S, Coumar MV, Kundu S, Rao AS (2014) Rhizosphere effect of kharif crops on phosphatases and dehydrogenase activities in a Typic Haplustert. Natl Acad Sci Lett 37(2):103–106

    Article  Google Scholar 

  48. Dotaniya ML, Datta SC, Biswas DR, Meena HM, Rajendiran S, Meena AL (2015) Phosphorus dynamics mediated by bagasse, press mud and rice straw in inceptisol of north India. Agrochimica 59(4):358–369

    Google Scholar 

  49. Dotaniya ML, Sharma MM, Kumar K, Singh PP (2013) Impact of crop residue management on nutrient balance in rice-wheat cropping system in an Aquic hapludoll. J Rural Agric Res 13(1):122–123

    Google Scholar 

  50. Dotaniya ML, Datta SC, Biswas DR, Meena BP (2013) Effect of solution phosphorus concentration on the exudation of oxalate ions by wheat (Triticum aestivum L.). Proc Natl Acad Sci India Sec B: Biol Sci 83(3):305–309

    Article  Google Scholar 

  51. Singh VS, Meena SK, Verma JP, Kumrar A, Aeron A, Mishra PK, Bisht JK, Pattanayaka A, Naveed M, Dotaniya ML (2017) Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecol Eng 107:8–32

    Article  Google Scholar 

  52. Dotaniya ML, Rajendiran S, Meena BP, Meena AL, Meena BL, Jat RL, Saha JK (2016) Elevated carbon dioxide (CO2) and temperature vis- a-vis carbon sequestration potential of global terrestrial ecosystem. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation Agriculture: an approach to combat climate change in Indian Himalaya. Springer, India, pp 225–256

    Chapter  Google Scholar 

  53. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, India, pp 113–134

    Chapter  Google Scholar 

  54. Dotaniya ML, Kushwah SK (2013) Nutrients uptake ability of various rainy season crops grown in a Vertisol of central India. Afr J Agric Res 8(44):5592–5598

    Google Scholar 

  55. Meena VD, Dotaniya ML, Rajendiran S, Coumar MV, Kundu S, Rao AS (2013) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci India Sec B: Biol Sci 84(3):505–518

    Article  Google Scholar 

  56. Prajapati K, Rajendiran S, Coumar MV, Dotaniya ML, Ajay KS, Saha JK, Patra AK (2016) Carbon occlusion potential of rice phytoliths: implications for global carbon cycle and climate change mitigation. Appl Ecol Environ Res 14(2):265–281

    Article  Google Scholar 

  57. Prajapati K, Rejendiran S, Coumar MV, Dotaniya ML, Meena VD, Ajay KNK, Rawat AK, Kundu S (2014) Bio-sequestration of carbon in rice phytoliths. Natl Acad Sci Lett 38:129–133

    Article  Google Scholar 

  58. Rajendiran S, Coumar MV, Kundu S, Ajay DML, Rao AS (2012) Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems. Curr Sci 103(8):911–920

    Google Scholar 

  59. Das SK, Verma A (2011) Role of soil enzymes in maintaining soil health. In: Shukla G, Verma A (eds) Soil enzymology. Springer International, Berlin https://doi.org/10.1007/978-3-642-14225-3_2

  60. Gianfreda L, Rao MA (2014) Enzymes in agricultural sciences. OMICS Group eBooks, Italy

    Google Scholar 

  61. Thakur JK, Sahu A, Singh UB, Mandal A, Manna MC (2015) Molecular techniques in soil biodiversity study. In: Microbial biodiversity a boon for agriculture sustainability. Biotech Books, New Delhi, pp 505–524

    Google Scholar 

  62. Mandal A, Thakur JK, Sahu A, Bhattacharjya S, Manna MC, Patra AK (2017) Plant–microbe interaction for the removal of heavy metal from contaminated site. In: Choudhary D, Varma A, Tuteja N (eds) Plant-microbe interaction: an approach to sustainable agriculture. Springer, Singapore

    Google Scholar 

  63. Johnsen K, Jacobsen CS, Torsvik V, Sorensen J (2001) Pesticide effects on bacterial diversity in agricultural soils-a review. Biol Fertil Soils 33:443–453

    Article  Google Scholar 

  64. Madigan MT, Martinko JM (2006) Brock biology of microorganisms, 11th edn. Pearson Prentice Hall, USA

    Google Scholar 

  65. Mills DK, Entry JA, Gillevet PM (2007) Assessing microbial community diversity usingamplicon length heterogeneity polymerase chain reaction. Soil Sci Soc Am J 71:572–578

    Article  Google Scholar 

  66. Meena VD, Dotaniya ML, Saha JK, Patra AK (2015) Antibiotics and antibiotic resistant bacteria in wastewater: impact on environment, soil microbial activity and human health. Afr J Microbiol Res 9(14):965–978

    Article  Google Scholar 

  67. Rajendiran S, Dotaniya ML, Coumar MV, Panwar NR, Saha JK (2015) Heavy metal polluted Soils in India: status and countermeasures. JNKVV Res J 49(3):320–337

    Google Scholar 

  68. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Urban activities in india leading to soil pollution. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 193–228. https://doi.org/10.1007/978-981-10-4274-8

    Chapter  Google Scholar 

  69. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Industrial activities in India and their impact on agroecosystem. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 229–249. https://doi.org/10.1007/978-981-10-4274-9

    Chapter  Google Scholar 

  70. Saha JK, Panwar N, Srivastava A, Biswas AK, Kundu S, Rao AS (2010) Chemical, biochemical, and biological impact of untreated domestic sewage water use on Vertisol and its consequences on wheat (Triticum aestivum) productivity. Environ Monit Assess 161:403–412

    Article  Google Scholar 

  71. Dotaniya ML, Rajendiran S, Meena VD, Saha JK, Coumar MV, Kundu S, Patra AK (2017) Influence of chromium contamination on carbon mineralization and enzymatic activities in Vertisol. Agric Res 6(1):91–96

    Article  Google Scholar 

  72. Dotaniya ML, Das H, Meena VD (2014) Assessment of chromium efficacy on germination, root elongation, and coleoptile growth of wheat (Triticum aestivum L.) at different growth periods. Environ Monit Assess 186:2957–2963

    Article  Google Scholar 

  73. Dotaniya ML, Meena VD, Das H (2014) Chromium toxicity on seed germination, root elongation and coleoptile growth of pigeon pea (Cajanus cajan). Legum Res 37(2):225–227

    Google Scholar 

  74. Bharti VS, Dotaniya ML, Shukla SP, Yadav VK (2017) Managing soil fertility through microbes: prospects, challenges and future strategies. In: Singh JS, Seneviratne G (eds) . Springer, Agro-environmental sustainability, pp 81–111

    Google Scholar 

  75. Dotaniya ML, Datta SC, Biswas DR, Meena HM, Kumar K (2014) Production of oxalic acid as influenced by the application of organic residue and its effect on phosphorus uptake by wheat (Triticum aestivum L.) in an Inceptisol of north India. Natl Acad Sci Lett 37(5):401–405

    Article  Google Scholar 

  76. Dotaniya ML, Prasad D, Meena HM, Jajoria DK, Narolia GP, Pingoliya KK, Meena OP, Kumar K, Meena BP, Ram A, Das H, Chari MS, Pal S (2013) Influence of phytosiderophore on iron and zinc uptake and rhizospheric microbial activity. Afr J Microbiol Res 7(51):5781–5788

    Article  Google Scholar 

  77. Dotaniya ML, Meena BP (2017) Rhizodeposition by plants: a boon to soil health. In: Elanchezhian R, Biswas AK, Ramesh K, Patra AK (eds) Advances in nutrient dynamics in soil plant system for improving nutrient use efficiency. New India Publishing Agency, New Delhi, pp 207–224

    Google Scholar 

  78. Dotaniya ML, Meena HM, Lata M, Kumar K (2013) Role of phytosiderophores in iron uptake by plants. Agric Sci Dig 33(1):73–76

    Google Scholar 

  79. Dotaniya ML, Meena VD (2013) Rhizosphere effect on nutrient availability in soil and its uptake by plants -a review. Proc Natl Acad Sci India Sec B: Biol Sci 85(1):1–12

    Google Scholar 

  80. Kabata-Pendias A (2000) Trace element in soils and plants, 3rd edn. CRC Press, Baton Raton

    Book  Google Scholar 

  81. Blaser P, Zimmermann S, Luster J, Shotyk W (2000) Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Sci Total Environ 249:257–280

    Article  Google Scholar 

  82. Dantu S (2009) Heavy metals concentration in soils of south-eastern part of Ranga Reddy district, Andhra Pradesh, India. Environ Monit Assess 149:213–222

    Article  Google Scholar 

  83. Namaghi HH, Karami GH, Saadat S (2011) A study on chemical properties of groundwater and soil in ophiolitic rocks in Firuzabad, east of Shahrood, Iran: with emphasis to heavy metal contamination. Environ Monit Assess 174(1–4):573–583

    Article  Google Scholar 

  84. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Assessment of heavy metals contamination in soil. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 155–191. https://doi.org/10.1007/978-981-10-4274-7

    Chapter  Google Scholar 

  85. Saur E, Juste C (1994) Enrichment of trace elements from long-range aerosol transport in sandy podozolic soils of southwest France. Water Air Soil Pollut 73:235–246

    Article  Google Scholar 

  86. Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627

    Article  Google Scholar 

  87. Taylor SR, Mclennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  88. Forstner U (1990) Contaminated sediments, Lecture notes in earth science. Springer, Berlin

    Google Scholar 

  89. Dotaniya ML, Thakur JK, Meena VD, Jajoria DK, Rathor G (2014) Chromium pollution: a threat to environment. Agric Rev 35(2):153–157

    Article  Google Scholar 

  90. Dotaniya ML, Saha JK, Meena VD, Rajendiran S, Coumar MV, Kundu S, Rao AS (2014) Impact of tannery effluent irrigation on heavy metal build up in soil and ground water in Kanpur. Agrotechnology 2(4):77

    Google Scholar 

  91. Muller G (1969) Index of geoaccumulation in sediments of the Rhine river. Geo J 2:109–118

    Google Scholar 

  92. Dotaniya ML, Meena VD, Rajendiran S, Coumar MV, Saha JK, Kundu S, Patra AK (2017) Geo-accumulation indices of heavy metals in soil and groundwater of Kanpur, India under long term irrigation of tannery effluent. Bull Environ Contam Toxicol 98(5):706–711

    Article  Google Scholar 

  93. Guan Y, Shao C, Ju M (2014) Heavy metal contamination assessment and partition for industrial and mining gathering areas. Int J Environ Res Public Health 11:7286–7303

    Article  Google Scholar 

  94. Jie-liang C, Zhou S, You-wei Z (2007) Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China. J Environ Sci 19:50–54

    Article  Google Scholar 

  95. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Remediation and management of polluted sites. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 317–372. https://doi.org/10.1007/978-981-10-4274-12

    Chapter  Google Scholar 

  96. Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis. Part 2 – Chemical and microbiological properties. Agron Soc Am, Madison

    Google Scholar 

  97. Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Poll 184:235–242

    Article  Google Scholar 

  98. Adesodun JK, Atayese MO, Agbaje TA, Osadiaye BA, Mafe OF, Soretire AA (2010) Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut 207:195–201

    Article  Google Scholar 

  99. Meers E, Hopgood M, Lesage E, Vervaeke P, Tack FMG, Verloo M (2004) Enhanced phytoextraction: in search for EDTA alternatives. Int J Phytoremediation 6(2):95–109

    Article  Google Scholar 

  100. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Impact of different developmental projects on soil fertility. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 251–269. https://doi.org/10.1007/978-981-10-4274-10

    Chapter  Google Scholar 

  101. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Soil protection policy. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 373–382. https://doi.org/10.1007/978-981-10-4274-13

    Chapter  Google Scholar 

  102. Saha JK, Rajendiran S, Coumar MV, Dotaniya ML, Kundu S, Patra AK (2017) Status of soil pollution in India. In: Saha JK et al (eds) Soil pollution – an emerging threat to agriculture. Springer, Singapore, pp 271–315. https://doi.org/10.1007/978-981-10-4274-11

    Chapter  Google Scholar 

  103. Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 267–280

    Chapter  Google Scholar 

  104. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    Article  Google Scholar 

  105. Chaney WR, Kelly JM Strickland RC (1978) Influence of cadmium and zinc on carbon dioxide evolution from litter and soil from a black oak forest. J Environ Qual 20:115–119

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Dr. U.S. Meena, Department of Agriculture and Animal Husbandry, PSS Central Institute of Vocational Education, Bhopal, India, for providing motivation and incorporating suggestions during the writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Dotaniya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dotaniya, M.L. et al. (2018). Environmental Impact Measurements: Tool and Techniques. In: MartĂ­nez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_60-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_60-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Environmental Impact Measurements: Tool and Techniques
    Published:
    30 May 2018

    DOI: https://doi.org/10.1007/978-3-319-48281-1_60-2

  2. Original

    Environmental Impact Measurements: Tool and Techniques
    Published:
    18 April 2018

    DOI: https://doi.org/10.1007/978-3-319-48281-1_60-1