Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. Perturbed Random Walks

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Let \((\xi _{k},\eta _{k})_{k\in \mathbb{N}}\) be a sequence of i.i.d. two-dimensional random vectors with generic copy (ξ, η). No condition is imposed on the dependence structure between ξ and η.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We use xy or max(x, y), xy or min(x, y) interchangeably, depending on typographical convenience.
 
2
To give a better feeling of the result, consider the simplest situation when \(\mathbb{E}\xi \in (-\infty, 0)\) and \(\mathbb{E}\eta ^{+} <\infty\). Then, by the strong law of large numbers, S n drifts to − at a linear rate. On the other hand, lim n →  n −1 η n + = 0 a.s. by the Borel–Cantelli lemma which shows that η n + grows at most sublinearly. Combining pieces together shows lim n →  (S n−1 +η n ) = − a.s.
 
3
A strange assumption \(\mathbb{P}\{\eta = -\infty \}\in [0, 1)\) which is made here and in Lemma 1.3.12 is of principal importance for the proof of Theorem 2.1.5.
 
4
Actually, Breiman (Proposition 3 in [52]) only proved the result for α ∈ (0, 1). The whole range α > 0 was later covered by Corollary 3.6 (iii) in [70].
 
5
Actually, \(\mathbb{E}\exp (a\,\sup _{n\geq 0}S_{n}) <\infty\) if, and only if, \(\mathbb{E}e^{a\xi } <1\). To prove the implication ⇐ just use the inequality \(\mathbb{E}\exp (a\,\sup _{n\geq 0}S_{n}) \leq \mathbb{E}\sum _{n\geq 0}e^{aS_{n}} = (1 - \mathbb{E}e^{a\xi })^{-1}\).
 
6
This is indeed a probability measure because, in view of the first condition in (1.16), \((e^{aS_{n}})_{n\in \mathbb{N}_{ 0}}\) is a nonnegative martingale with respect to the natural filtration.
 
7
The only principal difference is that one should use \(S_{[n\cdot ]}/n \Rightarrow \mu \Upsilon (t)\) on D where \(\Upsilon (t) = t\) for t ≥ 0, rather than Donsker’s theorem in the form (1.54).
 
8
We recall that \(\sup _{\lambda _{ n}(\theta _{k}^{(n)})\leq t}(\,f_{0}(\theta _{k}^{(n)}) + y_{k}^{(n)}) = f_{0}(0)\) and \(\sup _{\lambda _{ n}(\bar{\theta }_{i}^{(n)})\leq t}(\,f_{0}(\bar{\theta }_{i}^{(n)}) +\bar{ y}_{i}^{(n)}) = f_{0}(0)\) if the supremum is taken over the empty set.
 
9
The weak convergence of finite-dimensional distributions is immediate from K [nt]  ≤  + K [nt]  >  = [nt] and the fact that K [nt]  >  converges in distribution. This extends to the functional convergence because the limit is continuous and K [nt]  ≤  is a.s. nondecreasing in t (recall Pólya’s extension of Dini’s theorem: convergence of monotone functions to a continuous limit is locally uniform).
 
Literatur
8.
Zurück zum Zitat G. Alsmeyer, A. Iksanov and M. Meiners, Power and exponential moments of the number of visits and related quantities for perturbed random walks. J. Theoret. Probab. 28 (2015), 1–40.MathSciNetCrossRefMATH G. Alsmeyer, A. Iksanov and M. Meiners, Power and exponential moments of the number of visits and related quantities for perturbed random walks. J. Theoret. Probab. 28 (2015), 1–40.MathSciNetCrossRefMATH
9.
Zurück zum Zitat G. Alsmeyer, A. Iksanov and U. Rösler, On distributional properties of perpetuities. J. Theoret. Probab. 22 (2009), 666–682.MathSciNetCrossRefMATH G. Alsmeyer, A. Iksanov and U. Rösler, On distributional properties of perpetuities. J. Theoret. Probab. 22 (2009), 666–682.MathSciNetCrossRefMATH
16.
Zurück zum Zitat V. F. Araman and P. W. Glynn, Tail asymptotics for the maximum of perturbed random walk. Ann. Appl. Probab. 16 (2006), 1411–1431.MathSciNetCrossRefMATH V. F. Araman and P. W. Glynn, Tail asymptotics for the maximum of perturbed random walk. Ann. Appl. Probab. 16 (2006), 1411–1431.MathSciNetCrossRefMATH
17.
Zurück zum Zitat R. Arratia, A. D. Barbour and S. Tavaré, Logarithmic combinatorial structures: a probabilistic approach. European Mathematical Society, 2003.CrossRefMATH R. Arratia, A. D. Barbour and S. Tavaré, Logarithmic combinatorial structures: a probabilistic approach. European Mathematical Society, 2003.CrossRefMATH
18.
Zurück zum Zitat S. Asmussen, Applied probability and queues. 2nd Edition, Springer-Verlag, 2003. S. Asmussen, Applied probability and queues. 2nd Edition, Springer-Verlag, 2003.
31.
Zurück zum Zitat J. Bertoin, Random fragmentation and coagulation processes. Cambridge University Press, 2006.CrossRefMATH J. Bertoin, Random fragmentation and coagulation processes. Cambridge University Press, 2006.CrossRefMATH
44.
Zurück zum Zitat N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular variation. Cambridge University Press, 1989.MATH N. H. Bingham, C. M. Goldie and J. L. Teugels, Regular variation. Cambridge University Press, 1989.MATH
63.
Zurück zum Zitat D. L. Burkholder, B. J. Davis and R. F. Gundy, Integral inequalities for convex functions of operators on martingales. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, CA, 1970/1971), vol. II: Probability Theory, pp. 223–240. University of California Press, 1972. D. L. Burkholder, B. J. Davis and R. F. Gundy, Integral inequalities for convex functions of operators on martingales. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, CA, 1970/1971), vol. II: Probability Theory, pp. 223–240. University of California Press, 1972.
66.
Zurück zum Zitat L.-C. Chen and R. Sun, A monotonicity result for the range of a perturbed random walk. J. Theoret. Probab. 27 (2014), 997–1010.MathSciNetCrossRefMATH L.-C. Chen and R. Sun, A monotonicity result for the range of a perturbed random walk. J. Theoret. Probab. 27 (2014), 997–1010.MathSciNetCrossRefMATH
70.
Zurück zum Zitat D. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables. Stoch. Proc. Appl. 49 (1994), 75–98.MathSciNetCrossRefMATH D. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables. Stoch. Proc. Appl. 49 (1994), 75–98.MathSciNetCrossRefMATH
73.
Zurück zum Zitat B. Davis, Weak limits of perturbed random walks and the equation Y t = B t +αsup{Y s : s ≤ t} +βinf{Y s : s ≤ t}. Ann. Probab. 24 (1996), 2007–2023.MathSciNetCrossRefMATH B. Davis, Weak limits of perturbed random walks and the equation Y t = B t +αsup{Y s : st} +βinf{Y s : st}. Ann. Probab. 24 (1996), 2007–2023.MathSciNetCrossRefMATH
100.
Zurück zum Zitat A. Gnedin, A. Iksanov and A. Marynych, Limit theorems for the number of occupied boxes in the Bernoulli sieve. Theory Stochastic Process. 16(32) (2010), 44–57.MathSciNetMATH A. Gnedin, A. Iksanov and A. Marynych, Limit theorems for the number of occupied boxes in the Bernoulli sieve. Theory Stochastic Process. 16(32) (2010), 44–57.MathSciNetMATH
107.
110.
111.
Zurück zum Zitat D. R. Grey, Regular variation in the tail behaviour of solutions of random difference equations. Ann. Appl. Probab. 4 (1994), 169–183.MathSciNetCrossRefMATH D. R. Grey, Regular variation in the tail behaviour of solutions of random difference equations. Ann. Appl. Probab. 4 (1994), 169–183.MathSciNetCrossRefMATH
119.
Zurück zum Zitat A. Gut, Stopped random walks. Limit theorems and applications. 2nd Edition, Springer, 2009. A. Gut, Stopped random walks. Limit theorems and applications. 2nd Edition, Springer, 2009.
123.
Zurück zum Zitat X. Hao, Q. Tang and L. Wei, On the maximum exceedance of a sequence of random variables over a renewal threshold. J. Appl. Probab. 46 (2009), 559–570.MathSciNetCrossRefMATH X. Hao, Q. Tang and L. Wei, On the maximum exceedance of a sequence of random variables over a renewal threshold. J. Appl. Probab. 46 (2009), 559–570.MathSciNetCrossRefMATH
126.
Zurück zum Zitat P. Hitczenko, Comparison of moments for tangent sequences of random variables. Probab. Theory Relat. Fields. 78 (1988), 223–230.MathSciNetCrossRefMATH P. Hitczenko, Comparison of moments for tangent sequences of random variables. Probab. Theory Relat. Fields. 78 (1988), 223–230.MathSciNetCrossRefMATH
137.
Zurück zum Zitat A. Iksanov, On the supremum of perturbed random walk. Bulletin of Kiev University. 1 (2007), 161–164 (in Ukrainian). A. Iksanov, On the supremum of perturbed random walk. Bulletin of Kiev University. 1 (2007), 161–164 (in Ukrainian).
155.
156.
Zurück zum Zitat A. Iksanov and A. Pilipenko, A functional limit theorem for locally perturbed random walks. Probab. Math. Statist. 36, to appear (2016). A. Iksanov and A. Pilipenko, A functional limit theorem for locally perturbed random walks. Probab. Math. Statist. 36, to appear (2016).
157.
Zurück zum Zitat A. Iksanov and S. Polotskiy, Tail behavior of suprema of perturbed random walks. Theory Stochastic Process. 21(36) (2016), 12–16.MATH A. Iksanov and S. Polotskiy, Tail behavior of suprema of perturbed random walks. Theory Stochastic Process. 21(36) (2016), 12–16.MATH
186.
Zurück zum Zitat T. Konstantopoulos and S.-J. Lin, Macroscopic models for long-range dependent network traffic. Queueing Systems Theory Appl. 28 (1998), 215–243.MathSciNetCrossRefMATH T. Konstantopoulos and S.-J. Lin, Macroscopic models for long-range dependent network traffic. Queueing Systems Theory Appl. 28 (1998), 215–243.MathSciNetCrossRefMATH
189.
Zurück zum Zitat T. L. Lai and D. Siegmund, A nonlinear renewal theory with applications to sequential analysis. I. Ann. Statist. 5 (1977), 946–954.MathSciNetCrossRefMATH T. L. Lai and D. Siegmund, A nonlinear renewal theory with applications to sequential analysis. I. Ann. Statist. 5 (1977), 946–954.MathSciNetCrossRefMATH
190.
Zurück zum Zitat T. L. Lai and D. Siegmund, A nonlinear renewal theory with applications to sequential analysis. II. Ann. Statist. 7 (1979), 60–76.MathSciNetCrossRefMATH T. L. Lai and D. Siegmund, A nonlinear renewal theory with applications to sequential analysis. II. Ann. Statist. 7 (1979), 60–76.MathSciNetCrossRefMATH
207.
Zurück zum Zitat M. M. Meerschaert and S. A. Stoev, Extremal limit theorems for observations separated by random power law waiting times. J. Stat. Planning and Inference. 139 (2009), 2175–2188.MathSciNetCrossRefMATH M. M. Meerschaert and S. A. Stoev, Extremal limit theorems for observations separated by random power law waiting times. J. Stat. Planning and Inference. 139 (2009), 2175–2188.MathSciNetCrossRefMATH
224.
Zurück zum Zitat Z. Palmowski and B. Zwart, Tail asymptotics of the supremum of a regenerative process. J. Appl. Probab. 44 (2007), 349–365.MathSciNetCrossRefMATH Z. Palmowski and B. Zwart, Tail asymptotics of the supremum of a regenerative process. J. Appl. Probab. 44 (2007), 349–365.MathSciNetCrossRefMATH
226.
Zurück zum Zitat E. I. Pancheva and P. K. Jordanova, Functional transfer theorems for maxima of iid random variables. Comptes Rendus de l’Académie Bulgare des Sciences. 57 (2004), 9–14.MathSciNetMATH E. I. Pancheva and P. K. Jordanova, Functional transfer theorems for maxima of iid random variables. Comptes Rendus de l’Académie Bulgare des Sciences. 57 (2004), 9–14.MathSciNetMATH
227.
Zurück zum Zitat E. Pancheva, I. K. Mitov and K. V. Mitov, Limit theorems for extremal processes generated by a point process with correlated time and space components. Stat. Probab. Letters. 79 (2009), 390–395.MathSciNetCrossRefMATH E. Pancheva, I. K. Mitov and K. V. Mitov, Limit theorems for extremal processes generated by a point process with correlated time and space components. Stat. Probab. Letters. 79 (2009), 390–395.MathSciNetCrossRefMATH
237.
Zurück zum Zitat S. I. Resnick, Heavy-tail phenomena. Probabilistic and statistical modeling. Springer, 2007. S. I. Resnick, Heavy-tail phenomena. Probabilistic and statistical modeling. Springer, 2007.
241.
Zurück zum Zitat C. Y. Robert, Asymptotic probabilities of an exceedance over renewal thresholds with an application to risk theory. J. Appl. Probab. 42 (2005), 153–162.MathSciNetCrossRefMATH C. Y. Robert, Asymptotic probabilities of an exceedance over renewal thresholds with an application to risk theory. J. Appl. Probab. 42 (2005), 153–162.MathSciNetCrossRefMATH
256.
Zurück zum Zitat Y. Wang, Convergence to the maximum process of a fractional Brownian motion with shot noise. Stat. Probab. Letters. 90 (2014), 33–41.MathSciNetCrossRefMATH Y. Wang, Convergence to the maximum process of a fractional Brownian motion with shot noise. Stat. Probab. Letters. 90 (2014), 33–41.MathSciNetCrossRefMATH
265.
Metadaten
Titel
Perturbed Random Walks
verfasst von
Alexander Iksanov
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-49113-4_1