Skip to main content

2017 | OriginalPaper | Buchkapitel

32. Carbon Dioxide Mitigation

verfasst von : Sultan M. Al-Salem, Xiaoliang Ma, Mubarak M. Al-Mujaibel

Erschienen in: Springer Handbook of Petroleum Technology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stringent regulations on carbon dioxide (CO2) emissions from industrial sources (in general) and petroleum refineries (in particular) are being enforced world wide. Low-sulfur clean fuels enhance the demand for petroleum refinery utility gases (e. g., hydrogen, H2), which in turn leads to an increase in carbon-emission-intensive processes. This will ultimately force refineries to start implementing CO2 mitigation measures, which are increasingly evident in the strategies of industrial countries. In this work, we describe the major processes that contribute to a typical petroleum refinery's global CO2 emissions. Typical sources include unit utilities (i. e., heaters, boilers, and furnaces), fluid catalytic cracking units, hydrogen production (HP) units, flaring, and acid gas removal. A case study for a mega refinery structure is also given detailing a methodology for estimating CO2 emissions from various processes. The carbon footprint and specific emissions of various sources being considered are also reported.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
32.1
Zurück zum Zitat C. Patel, P. Lettieri, S.J.R. Simons, A. Germanà: Techno-economic performance analysis of energy production from biomass at different scales in the UK, Chem. Eng. J. 171, 986–996 (2011)CrossRef C. Patel, P. Lettieri, S.J.R. Simons, A. Germanà: Techno-economic performance analysis of energy production from biomass at different scales in the UK, Chem. Eng. J. 171, 986–996 (2011)CrossRef
32.2
Zurück zum Zitat A. Thernesz, G. Szalmas, P. Dinka, T. Simon: CO2 capture-new challenge in refinery industry, MOL Scientific Mag. (Challenges) 3, 12–24 (2008) A. Thernesz, G. Szalmas, P. Dinka, T. Simon: CO2 capture-new challenge in refinery industry, MOL Scientific Mag. (Challenges) 3, 12–24 (2008)
32.3
Zurück zum Zitat J. van Straelen, F. Geuzebroek, N. Goodchild, G. Protopapas, L. Mahoney: CO2 capture for refineries, a practical approach, Int. J. Greenh. Gas Contr. 4, 316–320 (2010)CrossRef J. van Straelen, F. Geuzebroek, N. Goodchild, G. Protopapas, L. Mahoney: CO2 capture for refineries, a practical approach, Int. J. Greenh. Gas Contr. 4, 316–320 (2010)CrossRef
32.4
Zurück zum Zitat IEA: Prospects for CO2 capture and storage. Energy technology analysis (International Energy Agency and Organization for Economic Co-operation and Development 2004) IEA: Prospects for CO2 capture and storage. Energy technology analysis (International Energy Agency and Organization for Economic Co-operation and Development 2004)
32.5
Zurück zum Zitat A. Samanta, A. Zhao, G.K.H. Shimizu, P. Sarkar, R. Gupta: Post-combustion CO2 capture using solid sorbents: A review, Ind. Eng. Chem. Res. 51, 1438–1463 (2010)CrossRef A. Samanta, A. Zhao, G.K.H. Shimizu, P. Sarkar, R. Gupta: Post-combustion CO2 capture using solid sorbents: A review, Ind. Eng. Chem. Res. 51, 1438–1463 (2010)CrossRef
32.6
Zurück zum Zitat F. Dong, H. Lou, M. Goto, T. Hirose: The petlyuk PSA process for separation of ternary gas mixtures: Exemplification by separating a mixture of CO2-CH4-N2, Sep. Purif. Technol. 15, 31–40 (1990)CrossRef F. Dong, H. Lou, M. Goto, T. Hirose: The petlyuk PSA process for separation of ternary gas mixtures: Exemplification by separating a mixture of CO2-CH4-N2, Sep. Purif. Technol. 15, 31–40 (1990)CrossRef
32.7
Zurück zum Zitat E.S. Kikkindes, R.T. Yang: Concentration and recovery of CO2 from flue gas by pressure swing adsorption, Ind. Eng. Chem. Res. 32, 2714–2720 (1993)CrossRef E.S. Kikkindes, R.T. Yang: Concentration and recovery of CO2 from flue gas by pressure swing adsorption, Ind. Eng. Chem. Res. 32, 2714–2720 (1993)CrossRef
32.8
Zurück zum Zitat R.V. Sirwardance, M.S. Shen, E.P. Fisher, J.A. Poston: Adsorption of CO2 on molecular sieves and activated carbon, Energy Fuels 15, 279–284 (2001)CrossRef R.V. Sirwardance, M.S. Shen, E.P. Fisher, J.A. Poston: Adsorption of CO2 on molecular sieves and activated carbon, Energy Fuels 15, 279–284 (2001)CrossRef
32.9
Zurück zum Zitat D.D. Do, K. Wang: A new model for the description of adsorption kinetics in heterogeneous activated carbon, Carbon 36, 1539–1554 (1998)CrossRef D.D. Do, K. Wang: A new model for the description of adsorption kinetics in heterogeneous activated carbon, Carbon 36, 1539–1554 (1998)CrossRef
32.10
Zurück zum Zitat M. Andrei, M. De Simoni, A. Delbianco, P. Cazzani, L. Zanibelli: Enhanced oil recovery with CO2 capture and sequestration. In: Proc. 21st World Energ. Congr., Montréal (2010) M. Andrei, M. De Simoni, A. Delbianco, P. Cazzani, L. Zanibelli: Enhanced oil recovery with CO2 capture and sequestration. In: Proc. 21st World Energ. Congr., Montréal (2010)
32.11
Zurück zum Zitat H. Al-Muslim, I. Dincer: Thermodynamic analysis of crude oil distillation systems, Int. J. Energ. Res. 29, 637–655 (2005)CrossRef H. Al-Muslim, I. Dincer: Thermodynamic analysis of crude oil distillation systems, Int. J. Energ. Res. 29, 637–655 (2005)CrossRef
32.12
Zurück zum Zitat D. Bonaquist: Analysis of CO 2 Emissions, Reductions and Capture for Large Scale Hydrogen Production Plants (Prazair, Daubury 2010) D. Bonaquist: Analysis of CO 2 Emissions, Reductions and Capture for Large Scale Hydrogen Production Plants (Prazair, Daubury 2010)
32.13
Zurück zum Zitat MathPro Inc.: An introduction to petroleum refining and the production of ultralow sulfur gasoline and diesel fuel, theicct.org (2011) Report prepared for the International Council on Clean Transportation (ICCT) MathPro Inc.: An introduction to petroleum refining and the production of ultralow sulfur gasoline and diesel fuel, theicct.org (2011) Report prepared for the International Council on Clean Transportation (ICCT)
32.15
Zurück zum Zitat Hydrocarbon Publishing Company: Refinery CO 2 Management Strategies (Hydrocarbon, Frazer 2010) Hydrocarbon Publishing Company: Refinery CO 2 Management Strategies (Hydrocarbon, Frazer 2010)
32.16
Zurück zum Zitat M.A. Fahim, T.A. Al-Sahaf, A.S. Elkilani: Fundamentals of Petroleum Refining (Elsevier, Amsterdam 2010) M.A. Fahim, T.A. Al-Sahaf, A.S. Elkilani: Fundamentals of Petroleum Refining (Elsevier, Amsterdam 2010)
32.17
Zurück zum Zitat EIA: US Energy Information Agency Annex 4: IPCC Reference Approach for Estimating CO 2 Emissions from Fossil Fuel Combustion (EIA, Washington 2011) EIA: US Energy Information Agency Annex 4: IPCC Reference Approach for Estimating CO 2 Emissions from Fossil Fuel Combustion (EIA, Washington 2011)
32.18
Zurück zum Zitat EIA: US Energy Information Agency, Appendix N. Emission Factors for Steam and Chilled/Hot Water (EIA, Washington 2013) EIA: US Energy Information Agency, Appendix N. Emission Factors for Steam and Chilled/Hot Water (EIA, Washington 2013)
32.20
Zurück zum Zitat J.H. Gary, G.E. Handwerk: Petroleum Refining: Technology and Economics, 3rd edn. (Marcel Dekker, New York 1994) J.H. Gary, G.E. Handwerk: Petroleum Refining: Technology and Economics, 3rd edn. (Marcel Dekker, New York 1994)
32.21
Zurück zum Zitat J. McKetta Jr.: Petroleum Processing Handbook, 1st edn. (Marcel Decker, New York 1992) J. McKetta Jr.: Petroleum Processing Handbook, 1st edn. (Marcel Decker, New York 1992)
32.22
Zurück zum Zitat G. Collodi, F. Wheeler: Hydrogen production via steam reforming with CO2 capture, Chem. Eng. Trans. 19, 37–42 (2010) G. Collodi, F. Wheeler: Hydrogen production via steam reforming with CO2 capture, Chem. Eng. Trans. 19, 37–42 (2010)
32.23
Zurück zum Zitat L.M. Wolschlag, K.A. Couch, F.X. Zhu, J. Alves: UOP FCC Design Advancements to Reduce Energy Consumption and CO 2 Emissions (UOP LLC, Des Plaines 2009) L.M. Wolschlag, K.A. Couch, F.X. Zhu, J. Alves: UOP FCC Design Advancements to Reduce Energy Consumption and CO 2 Emissions (UOP LLC, Des Plaines 2009)
32.24
Zurück zum Zitat K. Nillson, L. Zetterberg, M. Ahman: Allowance Allocation and CO 2 Intensity of the EU15 and Norwegian Refineries (IVL Swedish Environmental Research Institute, Stockholm 2005) K. Nillson, L. Zetterberg, M. Ahman: Allowance Allocation and CO 2 Intensity of the EU15 and Norwegian Refineries (IVL Swedish Environmental Research Institute, Stockholm 2005)
32.25
Zurück zum Zitat I. Moore: Reducing CO2 emissions, Pet. Technol. Q. Q2, 1–6 (2005) I. Moore: Reducing CO2 emissions, Pet. Technol. Q. Q2, 1–6 (2005)
32.26
Zurück zum Zitat C.C. Wear: The concept of delta coke, Catalagram 106, 3–9 (2009) C.C. Wear: The concept of delta coke, Catalagram 106, 3–9 (2009)
32.27
Zurück zum Zitat U.T. Turaga, R. Ramanathan: Catalytic naphtha reforming: Revisiting its importance in the modern refinery, J. Scientific Ind. Res. 62, 963–978 (2003) U.T. Turaga, R. Ramanathan: Catalytic naphtha reforming: Revisiting its importance in the modern refinery, J. Scientific Ind. Res. 62, 963–978 (2003)
32.28
Zurück zum Zitat J.G. Speight: Gas Processing: Environmental Aspects and Methods (Butterworth Heinemann, Oxford 1993) J.G. Speight: Gas Processing: Environmental Aspects and Methods (Butterworth Heinemann, Oxford 1993)
32.29
Zurück zum Zitat S. Mokhatab, W.A. Poe, J.G. Speight: Handbook of Natural Gas Transmission and Processing (Elsevier, Amsterdam 2006) pp. 261–294 S. Mokhatab, W.A. Poe, J.G. Speight: Handbook of Natural Gas Transmission and Processing (Elsevier, Amsterdam 2006) pp. 261–294
32.30
Zurück zum Zitat B. Jiang, X. Wang, M.L. Gray, Y. Duan, D. Luebke, B. Li: Development of amino acid and amino acid-complex based solid sorbents for CO2 capture, Appl. Energ. 109, 112–118 (2013)CrossRef B. Jiang, X. Wang, M.L. Gray, Y. Duan, D. Luebke, B. Li: Development of amino acid and amino acid-complex based solid sorbents for CO2 capture, Appl. Energ. 109, 112–118 (2013)CrossRef
32.31
Zurück zum Zitat C. Wein, G. Puxty, P. Feron: Amino acid salts for CO2 capture at flue gas temperatures, Chem. Eng. Sci. 107, 218–226 (2014)CrossRef C. Wein, G. Puxty, P. Feron: Amino acid salts for CO2 capture at flue gas temperatures, Chem. Eng. Sci. 107, 218–226 (2014)CrossRef
32.32
Zurück zum Zitat H. Mounzer: Reducing CO2 emissions from refineries through amine chemistry upgrade. In: Proc. 3rd Kuwait Chem. Conf., Kuwait City (2014) H. Mounzer: Reducing CO2 emissions from refineries through amine chemistry upgrade. In: Proc. 3rd Kuwait Chem. Conf., Kuwait City (2014)
32.33
Zurück zum Zitat M. Stockle, T. Bullen: Integrating refinery CO2 reduction strategies into your refinery. In: Proc. 31st ERTC Sustainable Refining Conf., Brussels (2008) M. Stockle, T. Bullen: Integrating refinery CO2 reduction strategies into your refinery. In: Proc. 31st ERTC Sustainable Refining Conf., Brussels (2008)
32.34
Zurück zum Zitat J. van Straelen, F. Geuzebroek, N. Goodchild, G. Protopapas, L. Mahoney: CO2 capture for refineries: A practical approach, Energ. Procedia 1, 179–185 (2009)CrossRef J. van Straelen, F. Geuzebroek, N. Goodchild, G. Protopapas, L. Mahoney: CO2 capture for refineries: A practical approach, Energ. Procedia 1, 179–185 (2009)CrossRef
32.35
Zurück zum Zitat US EPA: Available and Merging Technologies for Reducing Greenhouse gas Emissions from the Petroleum Refining Industry (Office of air and radiation, Research Triangle Park 2010) US EPA: Available and Merging Technologies for Reducing Greenhouse gas Emissions from the Petroleum Refining Industry (Office of air and radiation, Research Triangle Park 2010)
32.36
Zurück zum Zitat Ecofys: Methodology for the free allocation of emission allowances in the EU: ETS post 2012 (Sector report for the refinery industry 2009) Ecofys: Methodology for the free allocation of emission allowances in the EU: ETS post 2012 (Sector report for the refinery industry 2009)
32.39
Zurück zum Zitat I. Al-Hajri: Integration of Hydrogen and CO 2 Management Within Refinery Planning, Ph.D. Thesis (Chemical Engineering Department, Univ. Waterloo, Waterloo 2008) I. Al-Hajri: Integration of Hydrogen and CO 2 Management Within Refinery Planning, Ph.D. Thesis (Chemical Engineering Department, Univ. Waterloo, Waterloo 2008)
32.40
Zurück zum Zitat A. Szklo, R. Schaeffer: Fuel specification, energy consumption and CO2 emission in oil refineries, Energy 32, 1075–1092 (2007)CrossRef A. Szklo, R. Schaeffer: Fuel specification, energy consumption and CO2 emission in oil refineries, Energy 32, 1075–1092 (2007)CrossRef
32.41
Zurück zum Zitat M. Petrick, J. Pellegrino: The Potential for Reducing Energy Consumption in the Refining Industry, Report No. ANL/ESD/TM-158 (Argonne National Laboratory, Lemont 1999) M. Petrick, J. Pellegrino: The Potential for Reducing Energy Consumption in the Refining Industry, Report No. ANL/ESD/TM-158 (Argonne National Laboratory, Lemont 1999)
32.44
Zurück zum Zitat D. Johansson, P. Franck, T. Berntsson: CO2 capture in oil refineries: Assessment of the capture avoidance costs associated with different heat supply options in a future energy market, Energ. Convers. Manag. 66, 127–142 (2013)CrossRef D. Johansson, P. Franck, T. Berntsson: CO2 capture in oil refineries: Assessment of the capture avoidance costs associated with different heat supply options in a future energy market, Energ. Convers. Manag. 66, 127–142 (2013)CrossRef
32.45
Zurück zum Zitat D. Johansson, P. Franck, K. Pettersson, T. Berntsson: Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances, Energy 59, 387–401 (2013)CrossRef D. Johansson, P. Franck, K. Pettersson, T. Berntsson: Comparative study of Fischer–Tropsch production and post-combustion CO2 capture at an oil refinery: Economic evaluation and GHG (greenhouse gas emissions) balances, Energy 59, 387–401 (2013)CrossRef
32.46
Zurück zum Zitat D. Johansson, J. Rootze, T. Berntsson, F. Johnsson: Assessment of strategies for CO2 abatement in the European petroleum refining industry, Energy 42, 375–386 (2012)CrossRef D. Johansson, J. Rootze, T. Berntsson, F. Johnsson: Assessment of strategies for CO2 abatement in the European petroleum refining industry, Energy 42, 375–386 (2012)CrossRef
32.47
Zurück zum Zitat S.M. Al-Salem: Carbon dioxide (CO2) emission sources in Kuwait from the downstream industry: Critical analysis with a current and futuristic view, Energy 81, 575–587 (2015)CrossRef S.M. Al-Salem: Carbon dioxide (CO2) emission sources in Kuwait from the downstream industry: Critical analysis with a current and futuristic view, Energy 81, 575–587 (2015)CrossRef
Metadaten
Titel
Carbon Dioxide Mitigation
verfasst von
Sultan M. Al-Salem
Xiaoliang Ma
Mubarak M. Al-Mujaibel
Copyright-Jahr
2017
Verlag
Springer International Publishing
DOI
https://doi.org/10.1007/978-3-319-49347-3_32