Skip to main content

2016 | OriginalPaper | Buchkapitel

Deep Learning Trends for Focal Brain Pathology Segmentation in MRI

verfasst von : Mohammad Havaei, Nicolas Guizard, Hugo Larochelle, Pierre-Marc Jodoin

Erschienen in: Machine Learning for Health Informatics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Segmentation of focal (localized) brain pathologies such as brain tumors and brain lesions caused by multiple sclerosis and ischemic strokes are necessary for medical diagnosis, surgical planning and disease development as well as other applications such as tractography. Over the years, attempts have been made to automate this process for both clinical and research reasons. In this regard, machine learning methods have long been a focus of attention. Over the past two years, the medical imaging field has seen a rise in the use of a particular branch of machine learning commonly known as deep learning. In the non-medical computer vision world, deep learning based methods have obtained state-of-the-art results on many datasets. Recent studies in computer aided diagnostics have shown deep learning methods (and especially convolutional neural networks - CNN) to yield promising results. In this chapter, we provide a survey of CNN methods applied to medical imaging with a focus on brain pathology segmentation. In particular, we discuss their characteristic peculiarities and their specific configuration and adjustments that are best suited to segment medical images. We also underline the intrinsic differences deep learning methods have with other machine learning methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note that the BRATS organizers released a dataset in 2014 but quickly removed it from the web. This version of the dataset is no longer available.
 
2
Using stride of n means that every n pixel will be mapped to 1 pixel in the label map (assuming the model has one layer). This causes the model to loose pixel level accuracy if full image prediction is to be used at test time. One way to deal with this issue is presented by Pinheiro et al. [62]. Alternatively we can use stride of 1 every where in the model.
 
3
In the literature this way of up sampling is some times wrongly referred to as deconvolution.
 
4
Valid mode is when kernel and input have complete overlap.
 
5
Full mode is when minimum overlap is a sufficient condition for applying convolution.
 
Literatur
3.
Zurück zum Zitat Ali, H., Elmogy, M., El-Daydamony, E., Atwan, A.: Multi-resolution mri brain image segmentation based on morphological pyramid and fuzzy c-mean clustering. Arab. J. Sci. Eng. 40(11), 3173–3185 (2015)CrossRef Ali, H., Elmogy, M., El-Daydamony, E., Atwan, A.: Multi-resolution mri brain image segmentation based on morphological pyramid and fuzzy c-mean clustering. Arab. J. Sci. Eng. 40(11), 3173–3185 (2015)CrossRef
4.
Zurück zum Zitat Alvarez, J.M., Gevers, T., LeCun, Y., Lopez, A.M.: Road scene segmentation from a single image. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 376–389. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33786-4_28 CrossRef Alvarez, J.M., Gevers, T., LeCun, Y., Lopez, A.M.: Road scene segmentation from a single image. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 376–389. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-33786-4_​28 CrossRef
5.
Zurück zum Zitat Arevalo, J., Gonzalez, F.A., Ramos-Pollan, R., Oliveira, J.L., Guevara Lopez, M.A.: Convolutional neural networks for mammography mass lesion classification. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 797–800. IEEE (2015) Arevalo, J., Gonzalez, F.A., Ramos-Pollan, R., Oliveira, J.L., Guevara Lopez, M.A.: Convolutional neural networks for mammography mass lesion classification. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 797–800. IEEE (2015)
6.
Zurück zum Zitat Bakas, S., Zeng, K., Sotiras, A., Rathore, S., Akbari, H., Gaonkar, B., Rozycki, M., Pati, S., Davazikos, C.: Segmentation of gliomas in multimodal magnetic resonance imaging volumes based on a hybrid generative-discriminative framework. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 5–12 (2015) Bakas, S., Zeng, K., Sotiras, A., Rathore, S., Akbari, H., Gaonkar, B., Rozycki, M., Pati, S., Davazikos, C.: Segmentation of gliomas in multimodal magnetic resonance imaging volumes based on a hybrid generative-discriminative framework. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 5–12 (2015)
7.
Zurück zum Zitat Bar, Y., Diamant, I., Wolf, L., Greenspan, H.: Deep learning with non-medical training used for chest pathology identification. In: SPIE Medical Imaging, p. 94140V. International Society for Optics and Photonics (2015) Bar, Y., Diamant, I., Wolf, L., Greenspan, H.: Deep learning with non-medical training used for chest pathology identification. In: SPIE Medical Imaging, p. 94140V. International Society for Optics and Photonics (2015)
8.
Zurück zum Zitat Bauer, S., et al.: A survey of MRI-based medical image analysis for brain tumor studies. Phy. Med. Biol. 58(13), 97–129 (2013)CrossRef Bauer, S., et al.: A survey of MRI-based medical image analysis for brain tumor studies. Phy. Med. Biol. 58(13), 97–129 (2013)CrossRef
9.
Zurück zum Zitat Bauer, S., Wiest, R., Reyes, M.: segmentation of brain tumor images based on integrated hierarchical classification and regularization. In: proceeding of BRATS-MICCAI (2012) Bauer, S., Wiest, R., Reyes, M.: segmentation of brain tumor images based on integrated hierarchical classification and regularization. In: proceeding of BRATS-MICCAI (2012)
10.
Zurück zum Zitat Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRef Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRef
11.
Zurück zum Zitat Brosch, T., Tang, L., Yoo, Y., Li, D., Traboulsee, A., Tam, R.: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging (2016) Brosch, T., Tang, L., Yoo, Y., Li, D., Traboulsee, A., Tam, R.: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans. Med. Imaging (2016)
12.
Zurück zum Zitat Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_1 CrossRef Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-24574-4_​1 CrossRef
13.
Zurück zum Zitat Carneiro, G., Nascimento, J., Bradley, A.P.: Unregistered multiview Mammogram analysis with pre-trained deep learning models. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 652–660. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_78 CrossRef Carneiro, G., Nascimento, J., Bradley, A.P.: Unregistered multiview Mammogram analysis with pre-trained deep learning models. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 652–660. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-24574-4_​78 CrossRef
14.
Zurück zum Zitat Chen, H., Ni, D., Qin, J., Li, S., Yang, X., Wang, T., Heng, P.A.: Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J. Biomed. Health Informatics 19(5), 1627–1636 (2015)CrossRef Chen, H., Ni, D., Qin, J., Li, S., Yang, X., Wang, T., Heng, P.A.: Standard plane localization in fetal ultrasound via domain transferred deep neural networks. IEEE J. Biomed. Health Informatics 19(5), 1627–1636 (2015)CrossRef
15.
Zurück zum Zitat Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, pp. 2843–2851 (2012) Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, pp. 2843–2851 (2012)
16.
Zurück zum Zitat Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40763-5_51 CrossRef Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40763-5_​51 CrossRef
17.
Zurück zum Zitat Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE Trans. Med. Imaging 27(5), 629–640 (2008)CrossRef Corso, J.J., Sharon, E., Dube, S., El-Saden, S., Sinha, U., Yuille, A.: Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE Trans. Med. Imaging 27(5), 629–640 (2008)CrossRef
18.
Zurück zum Zitat Corso, J.J., Sharon, E., Yuille, A.: Multilevel segmentation and integrated Bayesian model classification with an application to brain tumor segmentation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 790–798. Springer, Heidelberg (2006). doi:10.1007/11866763_97 CrossRef Corso, J.J., Sharon, E., Yuille, A.: Multilevel segmentation and integrated Bayesian model classification with an application to brain tumor segmentation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 790–798. Springer, Heidelberg (2006). doi:10.​1007/​11866763_​97 CrossRef
19.
Zurück zum Zitat Dollár, P., Zitnick, C.: Structured forests for fast edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1841–1848 (2013) Dollár, P., Zitnick, C.: Structured forests for fast edge detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1841–1848 (2013)
20.
Zurück zum Zitat Dvorak, P., Menze, B.: Structured prediction with convolutional neural networks for multimodal brain tumor segmentation. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 13–24 (2015) Dvorak, P., Menze, B.: Structured prediction with convolutional neural networks for multimodal brain tumor segmentation. In: Proceeding of the Multimodal Brain Tumor Image Segmentation Challenge, pp. 13–24 (2015)
21.
Zurück zum Zitat Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)MathSciNetMATH Erhan, D., Bengio, Y., Courville, A., Manzagol, P.A., Vincent, P., Bengio, S.: Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 11, 625–660 (2010)MathSciNetMATH
24.
Zurück zum Zitat Festa, J., Pereira, S., Mariz, J., Sousa, N., Silva, C.: Automatic brain tumor segmentation of multi-sequence MR images using random dicision forests. In: Proceeding Workshop on Brain Tumor Segmentation MICCAI (2013) Festa, J., Pereira, S., Mariz, J., Sousa, N., Silva, C.: Automatic brain tumor segmentation of multi-sequence MR images using random dicision forests. In: Proceeding Workshop on Brain Tumor Segmentation MICCAI (2013)
27.
Zurück zum Zitat Gao, M., Bagci, U., Lu, L., Wu, A., Buty, M., Shin, H.C., Roth, H., Papadakis, G.Z., Depeursinge, A., Summers, R.M., et al.: Holistic classification of ct attenuation patterns for interstitial lung diseases via deep convolutional neural networks Gao, M., Bagci, U., Lu, L., Wu, A., Buty, M., Shin, H.C., Roth, H., Papadakis, G.Z., Depeursinge, A., Summers, R.M., et al.: Holistic classification of ct attenuation patterns for interstitial lung diseases via deep convolutional neural networks
28.
Zurück zum Zitat van Ginneken, B., Setio, A.A., Jacobs, C., Ciompi, F.: Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 286–289. IEEE (2015) van Ginneken, B., Setio, A.A., Jacobs, C., Ciompi, F.: Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 286–289. IEEE (2015)
29.
Zurück zum Zitat Girardi, D., Küng, J., Kleiser, R., Sonnberger, M., Csillag, D., Trenkler, J., Holzinger, A.: Interactive knowledge discovery with the doctor-in-the-loop: a practical example of cerebral aneurysms research. Brain Informatics, pp. 1–11 (2016) Girardi, D., Küng, J., Kleiser, R., Sonnberger, M., Csillag, D., Trenkler, J., Holzinger, A.: Interactive knowledge discovery with the doctor-in-the-loop: a practical example of cerebral aneurysms research. Brain Informatics, pp. 1–11 (2016)
30.
Zurück zum Zitat Goodfellow, I.J., et al.: Maxout networks. In: ICML (2013) Goodfellow, I.J., et al.: Maxout networks. In: ICML (2013)
31.
Zurück zum Zitat Gotz, M., Weber, C., Blocher, J., Stieltjes, B., Meinzer, H.P., Maier-Hein, K.: Extremely randomized trees based brain tumor segmentation. In: proceeding of BRATS Challenge-MICCAI (2014) Gotz, M., Weber, C., Blocher, J., Stieltjes, B., Meinzer, H.P., Maier-Hein, K.: Extremely randomized trees based brain tumor segmentation. In: proceeding of BRATS Challenge-MICCAI (2014)
32.
Zurück zum Zitat Guizard, N., Coupé, P., Fonov, V.S., Manjón, J.V., et al.: Rotation-invariant multi-contrast non-local means for ms lesion segmentation (2015) Guizard, N., Coupé, P., Fonov, V.S., Manjón, J.V., et al.: Rotation-invariant multi-contrast non-local means for ms lesion segmentation (2015)
33.
Zurück zum Zitat Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 447–456 (2015) Hariharan, B., Arbeláez, P., Girshick, R., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 447–456 (2015)
36.
Zurück zum Zitat Havaei, M., Dutil, F., Pal, C., Larochelle, H., Jodoin, P.-M.: A convolutional neural network approach to brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 195–208. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30858-6_17 CrossRef Havaei, M., Dutil, F., Pal, C., Larochelle, H., Jodoin, P.-M.: A convolutional neural network approach to brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 195–208. Springer, Heidelberg (2016). doi:10.​1007/​978-3-319-30858-6_​17 CrossRef
37.
Zurück zum Zitat Havaei, M., Jodoin, P.M., Larochelle, H.: Efficient interactive brain tumor segmentation as within-brain knn classification. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 556–561. IEEE (2014) Havaei, M., Jodoin, P.M., Larochelle, H.: Efficient interactive brain tumor segmentation as within-brain knn classification. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 556–561. IEEE (2014)
38.
Zurück zum Zitat Havaei, M., Larochelle, H., Poulin, P., Jodoin, P.M.: Within-brain classification for brain tumor segmentation. Int. J. Comput. Assist. Radiol. Surg., 1–12 (2015) Havaei, M., Larochelle, H., Poulin, P., Jodoin, P.M.: Within-brain classification for brain tumor segmentation. Int. J. Comput. Assist. Radiol. Surg., 1–12 (2015)
39.
Zurück zum Zitat Ho, S., Bullitt, E., Gerig, G.: Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: Proceeding International Conference Pattern Recognition, vol. 1, pp. 532–535 (2002) Ho, S., Bullitt, E., Gerig, G.: Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: Proceeding International Conference Pattern Recognition, vol. 1, pp. 532–535 (2002)
40.
Zurück zum Zitat Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Informatics 3(2), 119–131 (2016)CrossRef Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Informatics 3(2), 119–131 (2016)CrossRef
41.
Zurück zum Zitat Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics-state-of-the-art, future challenges and research directions. BMC Bioinformatics 15(Suppl 6), I1 (2014)CrossRef Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics-state-of-the-art, future challenges and research directions. BMC Bioinformatics 15(Suppl 6), I1 (2014)CrossRef
42.
Zurück zum Zitat Jiang, C., Zhang, X., Huang, W., Meinel, C.: Segmentation and quantification of brain tumor. In: IEEE Symposium on Virtual Environments, Human-Computer Interfaces and Measurement Systems, (VECIMS), pp. 61–66 (2004) Jiang, C., Zhang, X., Huang, W., Meinel, C.: Segmentation and quantification of brain tumor. In: IEEE Symposium on Virtual Environments, Human-Computer Interfaces and Measurement Systems, (VECIMS), pp. 61–66 (2004)
43.
Zurück zum Zitat Kamnitsas, K., Chen, L., Ledig, C., Rueckert, D., Glocker, B.: Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. Ischemic Stroke Lesion Segmentation, p. 13 (2015) Kamnitsas, K., Chen, L., Ledig, C., Rueckert, D., Glocker, B.: Multi-scale 3D convolutional neural networks for lesion segmentation in brain MRI. Ischemic Stroke Lesion Segmentation, p. 13 (2015)
44.
Zurück zum Zitat Kaus, M., Warfield, S.K., Jolesz, F.A., Kikinis, R.: Adaptive template moderated brain tumor segmentation in MRI. In: Evers, H., Glombitza, G., Meinzer, H.-P., Lehmann, T. (eds.) Bildverarbeitung für die Medizin 1999, pp. 102–106. Springer, Heidelberg (1999)CrossRef Kaus, M., Warfield, S.K., Jolesz, F.A., Kikinis, R.: Adaptive template moderated brain tumor segmentation in MRI. In: Evers, H., Glombitza, G., Meinzer, H.-P., Lehmann, T. (eds.) Bildverarbeitung für die Medizin 1999, pp. 102–106. Springer, Heidelberg (1999)CrossRef
45.
Zurück zum Zitat Khotanlou, H., Colliot, O., Bloch, I.: Automatic brain tumor segmentation using symmetry analysis and deformable models. In: International Conference on Advances in Pattern Recognition ICAPR, pp. 198–202 (2007) Khotanlou, H., Colliot, O., Bloch, I.: Automatic brain tumor segmentation using symmetry analysis and deformable models. In: International Conference on Advances in Pattern Recognition ICAPR, pp. 198–202 (2007)
46.
Zurück zum Zitat Kleesiek, J., Biller, A., Urban, G., Kothe, U., Bendszus, M., Hamprecht, F.A.: ilastik for multi-modal brain tumor segmentation. In: proceeding of BRATS-MICCAI (2014) Kleesiek, J., Biller, A., Urban, G., Kothe, U., Bendszus, M., Hamprecht, F.A.: ilastik for multi-modal brain tumor segmentation. In: proceeding of BRATS-MICCAI (2014)
47.
Zurück zum Zitat Klein, T., Batmanghelich III., Wells III, W.M.: Distributed deep learning framework for large-scale 3D medical image segmentation 18(WS) (2015) Klein, T., Batmanghelich III., Wells III, W.M.: Distributed deep learning framework for large-scale 3D medical image segmentation 18(WS) (2015)
48.
Zurück zum Zitat Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012) Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)
49.
Zurück zum Zitat Kwon, D., Akbari, H., Da, X., Gaonkar, B., Davatzikos, C.: Multimodal brain tumor image segmentation using GLISTR. In: proceeding of BRATS Challenge - MICCAI (2014) Kwon, D., Akbari, H., Da, X., Gaonkar, B., Davatzikos, C.: Multimodal brain tumor image segmentation using GLISTR. In: proceeding of BRATS Challenge - MICCAI (2014)
50.
Zurück zum Zitat Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th International Conference on Machine Learning, pp. 473–480. ACM (2007) Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th International Conference on Machine Learning, pp. 473–480. ACM (2007)
51.
Zurück zum Zitat LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRef
52.
Zurück zum Zitat Lee, C.H., Greiner, R., Schmidt, M.: Support vector random fields for spatial classification. In: European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), pp. 121–132 (2005) Lee, C.H., Greiner, R., Schmidt, M.: Support vector random fields for spatial classification. In: European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), pp. 121–132 (2005)
53.
Zurück zum Zitat Li, R., Zhang, W., Suk, H.-I., Wang, L., Li, J., Shen, D., Ji, S.: Deep learning based imaging data completion for improved brain disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 305–312. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10443-0_39 Li, R., Zhang, W., Suk, H.-I., Wang, L., Li, J., Shen, D., Ji, S.: Deep learning based imaging data completion for improved brain disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 305–312. Springer, Heidelberg (2014). doi:10.​1007/​978-3-319-10443-0_​39
54.
Zurück zum Zitat Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
55.
Zurück zum Zitat Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceeding ICML, vol. 30, p. 1 (2013) Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceeding ICML, vol. 30, p. 1 (2013)
56.
Zurück zum Zitat Margeta, J., Criminisi, A., Cabrera Lozoya, R., Lee, D.C., Ayache, N.: Fine-tuned convolutional neural nets for cardiac MRI acquisition plane recognition. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, pp. 1–11 (2015) Margeta, J., Criminisi, A., Cabrera Lozoya, R., Lee, D.C., Ayache, N.: Fine-tuned convolutional neural nets for cardiac MRI acquisition plane recognition. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, pp. 1–11 (2015)
57.
Zurück zum Zitat Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21735-7_7 CrossRef Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). doi:10.​1007/​978-3-642-21735-7_​7 CrossRef
58.
Zurück zum Zitat Meier, R., Bauer, S., Slotboom, J., Wiest, R., Reyes, M.: A hybrid model for multimodal brain tumor segmentation. Multimodal Brain Tumor Segmentation, p. 31 (2013) Meier, R., Bauer, S., Slotboom, J., Wiest, R., Reyes, M.: A hybrid model for multimodal brain tumor segmentation. Multimodal Brain Tumor Segmentation, p. 31 (2013)
59.
Zurück zum Zitat Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRef Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRef
60.
Zurück zum Zitat Mostajabi, M., Yadollahpour, P., Shakhnarovich, G.: Feedforward semantic segmentation with zoom-out features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3376–3385 (2015) Mostajabi, M., Yadollahpour, P., Shakhnarovich, G.: Feedforward semantic segmentation with zoom-out features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3376–3385 (2015)
61.
Zurück zum Zitat Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 131–143. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30858-6_12 CrossRef Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 131–143. Springer, Heidelberg (2016). doi:10.​1007/​978-3-319-30858-6_​12 CrossRef
62.
Zurück zum Zitat Pinheiro, P., Collobert, R.: Recurrent convolutional neural networks for scene labeling. In: Proceedings of The 31st International Conference on Machine Learning, pp. 82–90 (2014) Pinheiro, P., Collobert, R.: Recurrent convolutional neural networks for scene labeling. In: Proceedings of The 31st International Conference on Machine Learning, pp. 82–90 (2014)
63.
Zurück zum Zitat Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: Robust estimation for brain tumor segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 530–537. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39903-2_65 CrossRef Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: Robust estimation for brain tumor segmentation. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 530–537. Springer, Heidelberg (2003). doi:10.​1007/​978-3-540-39903-2_​65 CrossRef
64.
Zurück zum Zitat Putaala, J., Kurkinen, M., Tarvos, V., Salonen, O., Kaste, M., Tatlisumak, T.: Silent brain infarcts and leukoaraiosis in young adults with first-ever ischemic stroke. Neurology 72(21), 1823–1829 (2009)CrossRef Putaala, J., Kurkinen, M., Tarvos, V., Salonen, O., Kaste, M., Tatlisumak, T.: Silent brain infarcts and leukoaraiosis in young adults with first-ever ischemic stroke. Neurology 72(21), 1823–1829 (2009)CrossRef
65.
Zurück zum Zitat Rao, V., Shari Sarabi, M., Jaiswal, A.: Brain tumor segmentation with deep learning. In: MICCAI BraTS (Brain Tumor Segmentation) Challenge, Proceedings Winning Contribution, pp. 31–35 (2014) Rao, V., Shari Sarabi, M., Jaiswal, A.: Brain tumor segmentation with deep learning. In: MICCAI BraTS (Brain Tumor Segmentation) Challenge, Proceedings Winning Contribution, pp. 31–35 (2014)
66.
Zurück zum Zitat Rexilius, J., Hahn, H.K., Klein, J., Lentschig, M.G., Peitgen, H.O.: Medical Imaging, p. 65140V (2007) Rexilius, J., Hahn, H.K., Klein, J., Lentschig, M.G., Peitgen, H.O.: Medical Imaging, p. 65140V (2007)
67.
Zurück zum Zitat Reza, S., Iftekharuddin, K.: Multi-class abnormal brain tissue segmentation using texture features. In: proceeding of BRATS Challenge - MICCAI (2013) Reza, S., Iftekharuddin, K.: Multi-class abnormal brain tissue segmentation using texture features. In: proceeding of BRATS Challenge - MICCAI (2013)
68.
Zurück zum Zitat Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_28 CrossRef Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-24574-4_​28 CrossRef
69.
Zurück zum Zitat Roth, H.R., Farag, A., Lu, L., Turkbey, E.B., Summers, R.M.: Deep convolutional networks for pancreas segmentation in CT imaging. In: SPIE Medical Imaging, p. 94131G. International Society for Optics and Photonics (2015) Roth, H.R., Farag, A., Lu, L., Turkbey, E.B., Summers, R.M.: Deep convolutional networks for pancreas segmentation in CT imaging. In: SPIE Medical Imaging, p. 94131G. International Society for Optics and Photonics (2015)
70.
Zurück zum Zitat Roth, H.R., Lu, L., Farag, A., Shin, H.-C., Liu, J., Turkbey, E.B., Summers, R.M.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24553-9_68 CrossRef Roth, H.R., Lu, L., Farag, A., Shin, H.-C., Liu, J., Turkbey, E.B., Summers, R.M.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-24553-9_​68 CrossRef
71.
Zurück zum Zitat Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10404-1_65 Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Heidelberg (2014). doi:10.​1007/​978-3-319-10404-1_​65
72.
Zurück zum Zitat Schlegl, T., Ofner, J., Langs, G.: Unsupervised pre-training across image domains improves lung tissue classification. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Zhang, S., Cai, W.T., Metaxas, D. (eds.) MCV 2014. LNCS, vol. 8848, pp. 82–93. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13972-2_8 Schlegl, T., Ofner, J., Langs, G.: Unsupervised pre-training across image domains improves lung tissue classification. In: Menze, B., Langs, G., Montillo, A., Kelm, M., Müller, H., Zhang, S., Cai, W.T., Metaxas, D. (eds.) MCV 2014. LNCS, vol. 8848, pp. 82–93. Springer, Heidelberg (2014). doi:10.​1007/​978-3-319-13972-2_​8
73.
Zurück zum Zitat Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning (2016) Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning (2016)
74.
Zurück zum Zitat Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014) Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​1556 (2014)
75.
Zurück zum Zitat Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation. In: Advances in Neural Information Processing Systems, pp. 2980–2988 (2015) Stollenga, M.F., Byeon, W., Liwicki, M., Schmidhuber, J.: Parallel multi-dimensional lstm, with application to fast biomedical volumetric image segmentation. In: Advances in Neural Information Processing Systems, pp. 2980–2988 (2015)
76.
Zurück zum Zitat Styner, M., Lee, J., Chin, B., Chin, M., Commowick, O., Tran, H., Markovic-Plese, S., et al.: 3D segmentation in the clinic: a grand challenge ii: MS lesion segmentation. MIDAS 2008, 1–6 (2008) Styner, M., Lee, J., Chin, B., Chin, M., Commowick, O., Tran, H., Markovic-Plese, S., et al.: 3D segmentation in the clinic: a grand challenge ii: MS lesion segmentation. MIDAS 2008, 1–6 (2008)
77.
Zurück zum Zitat Tajbakhsh, N., Shin, J., Gurudu, S., Hurst, R., Kendall, C., Gotway, M., Liang, J.: Convolutional neural networks for medical image analysis: Fine tuning or full training? (2016) Tajbakhsh, N., Shin, J., Gurudu, S., Hurst, R., Kendall, C., Gotway, M., Liang, J.: Convolutional neural networks for medical image analysis: Fine tuning or full training? (2016)
78.
Zurück zum Zitat Tustison, N.J., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation with ANTsR. Neuroinformatics 13(2), 209–225 (2015)CrossRef Tustison, N.J., et al.: Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation with ANTsR. Neuroinformatics 13(2), 209–225 (2015)CrossRef
79.
Zurück zum Zitat Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumor Segmentation) Challenge, Proceedings Winning Contribution, pp. 31–35 (2014) Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumor Segmentation) Challenge, Proceedings Winning Contribution, pp. 31–35 (2014)
80.
Zurück zum Zitat Vaidhya, K., Thirunavukkarasu, S., Alex, V., Krishnamurthi, G.: Multi-modal brain tumor segmentation using stacked denoising autoencoders. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 181–194. Springer, Heidelberg (2016). doi:10.1007/978-3-319-30858-6_16 CrossRef Vaidhya, K., Thirunavukkarasu, S., Alex, V., Krishnamurthi, G.: Multi-modal brain tumor segmentation using stacked denoising autoencoders. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 181–194. Springer, Heidelberg (2016). doi:10.​1007/​978-3-319-30858-6_​16 CrossRef
81.
Zurück zum Zitat Vaidya, S., Chunduru, A., Muthuganapathy, R., Krishnamurthi, G.: Longitudinal multiple sclerosis lesion segmentation using 3D convolutional neural networks Vaidya, S., Chunduru, A., Muthuganapathy, R., Krishnamurthi, G.: Longitudinal multiple sclerosis lesion segmentation using 3D convolutional neural networks
82.
Zurück zum Zitat Tulder, G., Bruijne, M.: Why does synthesized data improve multi-sequence classification? In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 531–538. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24553-9_65 CrossRef Tulder, G., Bruijne, M.: Why does synthesized data improve multi-sequence classification? In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 531–538. Springer, Heidelberg (2015). doi:10.​1007/​978-3-319-24553-9_​65 CrossRef
83.
Zurück zum Zitat Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)MathSciNetMATH Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)MathSciNetMATH
84.
Zurück zum Zitat Wang, T., Cheng, I., Basu, A.: Fluid vector flow and applications in brain tumor segmentation. IEEE Trans. Biomed. Eng. 56(3), 781–789 (2009)CrossRef Wang, T., Cheng, I., Basu, A.: Fluid vector flow and applications in brain tumor segmentation. IEEE Trans. Biomed. Eng. 56(3), 781–789 (2009)CrossRef
85.
Zurück zum Zitat Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014) Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, pp. 3320–3328 (2014)
86.
Zurück zum Zitat Zhang, J., Ma, K.K., Er, M.H., Chong, V., et al.: Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In: International Workshop on Advanced Image Technology (IWAIT 2004), pp. 207–211 (2004) Zhang, J., Ma, K.K., Er, M.H., Chong, V., et al.: Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In: International Workshop on Advanced Image Technology (IWAIT 2004), pp. 207–211 (2004)
87.
Zurück zum Zitat Zhao, L., Wu, W., Corso, J.J.: Brain tumor segmentation based on gmm and active contour method with a model-aware edge map. In: BRATS MICCAI, pp. 19–23 (2012) Zhao, L., Wu, W., Corso, J.J.: Brain tumor segmentation based on gmm and active contour method with a model-aware edge map. In: BRATS MICCAI, pp. 19–23 (2012)
88.
Zurück zum Zitat Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS pp. 36–39 (2014) Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: Proceedings MICCAI-BRATS pp. 36–39 (2014)
Metadaten
Titel
Deep Learning Trends for Focal Brain Pathology Segmentation in MRI
verfasst von
Mohammad Havaei
Nicolas Guizard
Hugo Larochelle
Pierre-Marc Jodoin
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-50478-0_6