Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Adsorptive Heat Transformation and Storage: Thermodynamic and Kinetic Aspects

verfasst von : Alessio Sapienza, Andrea Frazzica, Angelo Freni, Yuri Aristov

Erschienen in: Dynamics of Adsorptive Systems for Heat Transformation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

At present, the majority of thermodynamic cycles of heat engines are high-temperature cycles that are realized by internal combustion engines, steam and gas turbines, etc. (Cengel, Boles in Thermodynamics: an engineering approach, 4th edn. McGray-Hill Inc., New York, 2002). Traditional heat engine cycles are mainly based on burning of organic fuel that may result in dramatic increase of CO2 emissions and global warming. The world community has realized the gravity of these problems and taken initiatives to alleviate or reverse this situation. Fulfilment of these initiatives requires, first of all, the replacement of fossil fuels with renewable energy sources (e.g. the sun, wind, ambient heat, natural water basins, soil, air). These new heat sources have significantly lower temperature potential than that achieved by burning of fossil fuels which opens a niche for applying adsorption technologies for heat transformation and storage (Pons et al in Int J Refrig 22:5–17, 1999).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yu.A Cengel, M.A. Boles, Thermodynamics: An Engineering Approach, 4th edn. (McGray-Hill Inc., New York, 2002) Yu.A Cengel, M.A. Boles, Thermodynamics: An Engineering Approach, 4th edn. (McGray-Hill Inc., New York, 2002)
2.
Zurück zum Zitat M. Pons, F. Meunier, G. Cacciola, R. Critoph, M. Groll, L. Puigjaner, B. Spinner, F. Ziegler, Thermodynamic based comparison of sorption systems for cooling and heat pumping. Int. J. Refrig. 22, 5–17 (1999)CrossRef M. Pons, F. Meunier, G. Cacciola, R. Critoph, M. Groll, L. Puigjaner, B. Spinner, F. Ziegler, Thermodynamic based comparison of sorption systems for cooling and heat pumping. Int. J. Refrig. 22, 5–17 (1999)CrossRef
3.
Zurück zum Zitat S. Carnot (1824) Reflections on the Motive Power of Fire, in ed. by E. Mendoza (Dover, New York, 1960) S. Carnot (1824) Reflections on the Motive Power of Fire, in ed. by E. Mendoza (Dover, New York, 1960)
4.
Zurück zum Zitat T.X. Li, R.Z. Wang, H. Li, Progress in the development of solid e gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy. Prog. Energy Combust. Sci. 40(1), 1–58 (2013)MathSciNet T.X. Li, R.Z. Wang, H. Li, Progress in the development of solid e gas sorption refrigeration thermodynamic cycle driven by low-grade thermal energy. Prog. Energy Combust. Sci. 40(1), 1–58 (2013)MathSciNet
5.
Zurück zum Zitat I. Chandra, V.S. Patwardhan, Theoretical studies on adsorption heat transformer using zeolite-water vapour pair. Heat Recover. Syst. CHP 10, 527–537 (1990)CrossRef I. Chandra, V.S. Patwardhan, Theoretical studies on adsorption heat transformer using zeolite-water vapour pair. Heat Recover. Syst. CHP 10, 527–537 (1990)CrossRef
6.
Zurück zum Zitat Yu.I Aristov, Adsorptive transformation of ambient heat: a new cycle. Appl. Therm. Eng. 124, 521–524 (2017)CrossRef Yu.I Aristov, Adsorptive transformation of ambient heat: a new cycle. Appl. Therm. Eng. 124, 521–524 (2017)CrossRef
7.
Zurück zum Zitat Yu.I Aristov, Adsorptive transformation and storage of renewable heat: review of current trends in adsorption dynamics. Renew. Energy 110, 105–114 (2017)CrossRef Yu.I Aristov, Adsorptive transformation and storage of renewable heat: review of current trends in adsorption dynamics. Renew. Energy 110, 105–114 (2017)CrossRef
8.
Zurück zum Zitat B. Saha, A. Chakraborty, S. Koyama, K. Srinivasan, K. Ng, T. Kashiwagi, P. Dutta, Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device. Appl. Phys. Lett. 91, 111902 (2007)CrossRef B. Saha, A. Chakraborty, S. Koyama, K. Srinivasan, K. Ng, T. Kashiwagi, P. Dutta, Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device. Appl. Phys. Lett. 91, 111902 (2007)CrossRef
9.
Zurück zum Zitat Yu.I Aristov, Concept of adsorbent optimal for adsorptive cooling/heating. Appl. Therm. Eng. 72, 166–175 (2014)CrossRef Yu.I Aristov, Concept of adsorbent optimal for adsorptive cooling/heating. Appl. Therm. Eng. 72, 166–175 (2014)CrossRef
10.
Zurück zum Zitat A. Frazzica, A. Sapienza, A. Freni, Novel experimental methodology for the characterization of thermodynamic performance of advanced working pairs for adsorptive heat transformers. Appl. Therm. Eng. 40, 1–8 (2014) A. Frazzica, A. Sapienza, A. Freni, Novel experimental methodology for the characterization of thermodynamic performance of advanced working pairs for adsorptive heat transformers. Appl. Therm. Eng. 40, 1–8 (2014)
11.
Zurück zum Zitat D.I. Tchernev, D.T. Emerson, High-efficiency regenerative zeolite heat pump. ASHRAE Trans. 14, 2024–2032 (1988) D.I. Tchernev, D.T. Emerson, High-efficiency regenerative zeolite heat pump. ASHRAE Trans. 14, 2024–2032 (1988)
12.
Zurück zum Zitat S. Szarzynski, Y. Feng, M. Pons, Study of different internal vapour transports for adsorption cycles with heat regeneration. Int. J. Refrig. 20(6), 390–401 (1997)CrossRef S. Szarzynski, Y. Feng, M. Pons, Study of different internal vapour transports for adsorption cycles with heat regeneration. Int. J. Refrig. 20(6), 390–401 (1997)CrossRef
13.
Zurück zum Zitat F. Meunier, Theoretical performances of solid adsorbent cascading cycles using the zeolite - water and active carbon-methanol pairs: four case studies. Heat Recov. Syst. CHP 6, 491–498 (1986)CrossRef F. Meunier, Theoretical performances of solid adsorbent cascading cycles using the zeolite - water and active carbon-methanol pairs: four case studies. Heat Recov. Syst. CHP 6, 491–498 (1986)CrossRef
14.
Zurück zum Zitat S.V. Shelton, Solid adsorbent heat pump system. U.S. patent 4610148 (1986) S.V. Shelton, Solid adsorbent heat pump system. U.S. patent 4610148 (1986)
15.
Zurück zum Zitat Yu.I Aristov, A. Sapienza, A. Freni, D.S. Ovoschnikov, G. Restuccia, Reallocation of adsorption and desorption times for optimizing the cooling cycle parameters. Int. J. Refrig. 35, 525–531 (2012)CrossRef Yu.I Aristov, A. Sapienza, A. Freni, D.S. Ovoschnikov, G. Restuccia, Reallocation of adsorption and desorption times for optimizing the cooling cycle parameters. Int. J. Refrig. 35, 525–531 (2012)CrossRef
16.
Zurück zum Zitat I.I. El-Sharkawy, H. Abdel Meguid, B.B. Saha, Towards an optimum performance of adsorption chillers: reallocation of adsorption/desorption cycle times. Int. J. Heat Mass Transf. 63, 171–182 (2013)CrossRef I.I. El-Sharkawy, H. Abdel Meguid, B.B. Saha, Towards an optimum performance of adsorption chillers: reallocation of adsorption/desorption cycle times. Int. J. Heat Mass Transf. 63, 171–182 (2013)CrossRef
17.
Zurück zum Zitat B. Zajaczkowski, Optimizing performance of a three-bed adsorption chiller using new cycle time allocation and mass recovery. Appl. Therm. Eng. 100, 744–752 (2016)CrossRef B. Zajaczkowski, Optimizing performance of a three-bed adsorption chiller using new cycle time allocation and mass recovery. Appl. Therm. Eng. 100, 744–752 (2016)CrossRef
18.
Zurück zum Zitat D.M. Ruthven, S. Farooq, K.S. Knaebel, Pressure Swing Adsorption, Willey (1994), 376p D.M. Ruthven, S. Farooq, K.S. Knaebel, Pressure Swing Adsorption, Willey (1994), 376p
19.
Zurück zum Zitat A. Frazzica, B. Dawoud, R.E. Critoph, Theoretical analysis of several working pairs for adsorption heat transformer application, in Proceeding of HPC Conference, Nottingham (2016) A. Frazzica, B. Dawoud, R.E. Critoph, Theoretical analysis of several working pairs for adsorption heat transformer application, in Proceeding of HPC Conference, Nottingham (2016)
20.
Zurück zum Zitat Angelo Freni, Gaetano Maggio, Alessio Sapienza, Andrea Frazzica, Giovanni Restuccia, Salvatore Vasta, Comparative analysis of promising adsorbent/adsorbate pairs for adsorptive heat pumping, air conditioning and refrigeration. Appl. Therm. Eng. 104, 85–95 (2016)CrossRef Angelo Freni, Gaetano Maggio, Alessio Sapienza, Andrea Frazzica, Giovanni Restuccia, Salvatore Vasta, Comparative analysis of promising adsorbent/adsorbate pairs for adsorptive heat pumping, air conditioning and refrigeration. Appl. Therm. Eng. 104, 85–95 (2016)CrossRef
21.
Zurück zum Zitat A. Chakraborty, B. Saha, K.C. Ng, S. Koyama, K. Srinivasan, Theoretical insight of physical adsorption for a single-component adsorbent + adsorbate system: I. Thermodynamic property surfaces. Langmuir 25, 2204–2211 (2009)CrossRef A. Chakraborty, B. Saha, K.C. Ng, S. Koyama, K. Srinivasan, Theoretical insight of physical adsorption for a single-component adsorbent + adsorbate system: I. Thermodynamic property surfaces. Langmuir 25, 2204–2211 (2009)CrossRef
22.
Zurück zum Zitat H. Stach, J. Mugele, J. Jaenchen, E. Weiller, Influence of cycle temperatures on the thermo-chemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorption 11, 393–404 (2005)CrossRef H. Stach, J. Mugele, J. Jaenchen, E. Weiller, Influence of cycle temperatures on the thermo-chemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorption 11, 393–404 (2005)CrossRef
23.
Zurück zum Zitat S.K. Henninger, F.P. Schmidt, H.-M. Henning, Water adsorption characteristics of novel materials for heat transformation applications. Appl. Therm. Eng. 30, 1692–1702 (2010)CrossRef S.K. Henninger, F.P. Schmidt, H.-M. Henning, Water adsorption characteristics of novel materials for heat transformation applications. Appl. Therm. Eng. 30, 1692–1702 (2010)CrossRef
24.
Zurück zum Zitat J. Jaenchen, D. Ackermann, H. Stach, W. Broesicke, Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat. Sol. Energy 76, 339–344 (2004)CrossRef J. Jaenchen, D. Ackermann, H. Stach, W. Broesicke, Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat. Sol. Energy 76, 339–344 (2004)CrossRef
25.
Zurück zum Zitat G. Alefeld, R. Radermacher, Heat Conversion Systems (CRC Press, Boca Raton, 1994) G. Alefeld, R. Radermacher, Heat Conversion Systems (CRC Press, Boca Raton, 1994)
26.
Zurück zum Zitat YuI Aristov, V.E. Sharonov, M.M. Tokarev, Universal relation between the boundary temperatures of a basic cycle of sorption heat machines. Chem. Eng. Sci. 63, 2907–2912 (2008)CrossRef YuI Aristov, V.E. Sharonov, M.M. Tokarev, Universal relation between the boundary temperatures of a basic cycle of sorption heat machines. Chem. Eng. Sci. 63, 2907–2912 (2008)CrossRef
27.
Zurück zum Zitat M.M. Dubinin, Theory of physical adsorption of gases and vapour and adsorption properties of adsorbents of various natures and porous structures. Bull. Div. Chem. Soc. 1072–1078 (1960) M.M. Dubinin, Theory of physical adsorption of gases and vapour and adsorption properties of adsorbents of various natures and porous structures. Bull. Div. Chem. Soc. 1072–1078 (1960)
28.
Zurück zum Zitat W.M. Raldow, W.E. Wentworth, Chemical heat pumps - a basic thermodynamic analysis. Sol. Energy 23, 75–79 (1979)CrossRef W.M. Raldow, W.E. Wentworth, Chemical heat pumps - a basic thermodynamic analysis. Sol. Energy 23, 75–79 (1979)CrossRef
29.
Zurück zum Zitat V.E. Sharonov, YuI Aristov, Chemical and adsorption heat pumps: comments on the second law efficiency. Chem. Eng. J. 136, 419–424 (2008)CrossRef V.E. Sharonov, YuI Aristov, Chemical and adsorption heat pumps: comments on the second law efficiency. Chem. Eng. J. 136, 419–424 (2008)CrossRef
30.
Zurück zum Zitat F. Meunier, Solid sorption heat powered cycles for cooling and heat pumping applications. Appl. Therm. Eng. 18, 715–729 (1998)CrossRef F. Meunier, Solid sorption heat powered cycles for cooling and heat pumping applications. Appl. Therm. Eng. 18, 715–729 (1998)CrossRef
31.
Zurück zum Zitat L.Z. Zhang, L. Wang, Momentum and heat transfer in the adsorbent of a waste-heat adsorption cooling system. Energy 24, 605–624 (1999)CrossRef L.Z. Zhang, L. Wang, Momentum and heat transfer in the adsorbent of a waste-heat adsorption cooling system. Energy 24, 605–624 (1999)CrossRef
32.
Zurück zum Zitat L. Marletta, G. Maggio, A. Freni, M. Ingrasciotta, G. Restuccia, A non-uniform temperature non-uniform pressure dynamic model of heat and mass transfer in compact adsorbent beds. Int. J. Heat Mass Transf. 45, 3321–3330 (2002)CrossRefMATH L. Marletta, G. Maggio, A. Freni, M. Ingrasciotta, G. Restuccia, A non-uniform temperature non-uniform pressure dynamic model of heat and mass transfer in compact adsorbent beds. Int. J. Heat Mass Transf. 45, 3321–3330 (2002)CrossRefMATH
33.
Zurück zum Zitat J. Bauer, R. Herrmann, W. Mittelbach, W. Schwieger, Zeolite/aluminum composite adsorbents for application in adsorption refrigeration. Int. J. Energy Res. 33, 1233–1249 (2009)CrossRef J. Bauer, R. Herrmann, W. Mittelbach, W. Schwieger, Zeolite/aluminum composite adsorbents for application in adsorption refrigeration. Int. J. Energy Res. 33, 1233–1249 (2009)CrossRef
34.
Zurück zum Zitat I.S. Girnik, Yu.I Aristov, Making adsorptive chillers more fast and efficient: the effect of bi-dispersed adsorbent bed. Appl. Therm. Eng. 106, 254–256 (2016)CrossRef I.S. Girnik, Yu.I Aristov, Making adsorptive chillers more fast and efficient: the effect of bi-dispersed adsorbent bed. Appl. Therm. Eng. 106, 254–256 (2016)CrossRef
35.
Zurück zum Zitat YuI Aristov, I.S. Girnik, I.S. Glaznev, Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration. Energy 46, 484–492 (2012)CrossRef YuI Aristov, I.S. Girnik, I.S. Glaznev, Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration. Energy 46, 484–492 (2012)CrossRef
36.
Zurück zum Zitat L. Bonaccorsi, A. Freni, E. Proverbio, G. Restuccia, F. Russo, Zeolite coated cooper foams for heat pumping applications. Microporous Mesoporous Mater. 91, 7–14 (2006)CrossRef L. Bonaccorsi, A. Freni, E. Proverbio, G. Restuccia, F. Russo, Zeolite coated cooper foams for heat pumping applications. Microporous Mesoporous Mater. 91, 7–14 (2006)CrossRef
37.
Zurück zum Zitat D.M. Ruthven, Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984) D.M. Ruthven, Principles of Adsorption and Adsorption Processes (Wiley, New York, 1984)
38.
Zurück zum Zitat H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959)MATH H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1959)MATH
39.
Zurück zum Zitat Yu.I Aristov, Optimal adsorbent for adsorptive heat transformers: Dynamic considerations. Int. J. Refrig. 32(4), 675–686 (2009)CrossRef Yu.I Aristov, Optimal adsorbent for adsorptive heat transformers: Dynamic considerations. Int. J. Refrig. 32(4), 675–686 (2009)CrossRef
40.
Zurück zum Zitat YuI Aristov, Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties (review). J. Chem. Eng. Japan 40, 1242–1251 (2007)CrossRef YuI Aristov, Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties (review). J. Chem. Eng. Japan 40, 1242–1251 (2007)CrossRef
41.
Zurück zum Zitat YuI Aristov, “Heat from cold” – a new cycle for upgrading the ambient heat: adsorbent optimal from the dynamic point of view. Appl. Therm. Eng. 124, 1189–1193 (2017)CrossRef YuI Aristov, “Heat from cold” – a new cycle for upgrading the ambient heat: adsorbent optimal from the dynamic point of view. Appl. Therm. Eng. 124, 1189–1193 (2017)CrossRef
42.
Zurück zum Zitat M.M. Tokarev, A.D. Grekova, L.G. Gordeeva, YuI Aristov, A new cycle “Heat from Cold” for upgrading the ambient heat: the testing a lab-scale prototype with the composite sorbent CaClBr/silica. Appl. Energy 211, 136–145 (2018)CrossRef M.M. Tokarev, A.D. Grekova, L.G. Gordeeva, YuI Aristov, A new cycle “Heat from Cold” for upgrading the ambient heat: the testing a lab-scale prototype with the composite sorbent CaClBr/silica. Appl. Energy 211, 136–145 (2018)CrossRef
43.
Zurück zum Zitat L.G. Gordeeva, YuI Aristov, Composites “salt inside porous matrix” for adsorption heat transformation: a current state of the art and new trends. Int. J. Low Carbon Technol. 7(4), 288–302 (2012)CrossRef L.G. Gordeeva, YuI Aristov, Composites “salt inside porous matrix” for adsorption heat transformation: a current state of the art and new trends. Int. J. Low Carbon Technol. 7(4), 288–302 (2012)CrossRef
44.
Zurück zum Zitat S. Henninger, H. Habib, C. Janiak, MOFs as adsorbents for low temperature heating and cooling applications. J. Am. Chem. Soc. 131, 2776–2777 (2009)CrossRef S. Henninger, H. Habib, C. Janiak, MOFs as adsorbents for low temperature heating and cooling applications. J. Am. Chem. Soc. 131, 2776–2777 (2009)CrossRef
45.
Zurück zum Zitat F. Meunier, F. Poyelle, M.D. LeVan, Second-law analysis of adsorptive refrigeration cycles: the role of thermal coupling entropy production. Appl. Therm. Eng. 17, 43–55 (1997)CrossRef F. Meunier, F. Poyelle, M.D. LeVan, Second-law analysis of adsorptive refrigeration cycles: the role of thermal coupling entropy production. Appl. Therm. Eng. 17, 43–55 (1997)CrossRef
46.
Zurück zum Zitat H.-M. Henning, Solar assisted air conditioning in buildings—an overview. Appl. Therm. Eng. 27, 1734–1749 (2007)CrossRef H.-M. Henning, Solar assisted air conditioning in buildings—an overview. Appl. Therm. Eng. 27, 1734–1749 (2007)CrossRef
47.
Zurück zum Zitat J.J. Guilleminot, F. Meunier, B. Mischler, Etude de cycles intermittents `a adsorption solide pour la r´efrig´eration solaire. Revue de Physique Appliquee 15, 441–452 (1980)CrossRef J.J. Guilleminot, F. Meunier, B. Mischler, Etude de cycles intermittents `a adsorption solide pour la r´efrig´eration solaire. Revue de Physique Appliquee 15, 441–452 (1980)CrossRef
48.
Zurück zum Zitat Greg, S, K. Sing, Adsorption, Specific Surface, Porosity (Academic Press, N.Y, 1967), p. 306 Greg, S, K. Sing, Adsorption, Specific Surface, Porosity (Academic Press, N.Y, 1967), p. 306
49.
Zurück zum Zitat F. Meunier, Second law analysis of a solid adsorption heat pump operating on reversible cascade cycles. Heat Recover. Syst. CHP 5, 133–141 (1985)CrossRef F. Meunier, Second law analysis of a solid adsorption heat pump operating on reversible cascade cycles. Heat Recover. Syst. CHP 5, 133–141 (1985)CrossRef
50.
Zurück zum Zitat I.S. Glaznev, D.S. Ovoshchnikov, YuI Aristov, Kinetics of water adsorption/desorption under isobaric stages of adsorption heat transformers: the effect of isobar shape. Int. J. Heat Mass Transf. 52(7–8), 1774–1777 (2009)CrossRef I.S. Glaznev, D.S. Ovoshchnikov, YuI Aristov, Kinetics of water adsorption/desorption under isobaric stages of adsorption heat transformers: the effect of isobar shape. Int. J. Heat Mass Transf. 52(7–8), 1774–1777 (2009)CrossRef
51.
Zurück zum Zitat YuI Aristov, B. Dawoud, I.S. Glaznev, A. Elyas, A new methodology of studying the dynamics of water sorption under real operating conditions of AHPs: experiment. Int. J. Heat Mass Transf. 51, 4966–4972 (2008)CrossRef YuI Aristov, B. Dawoud, I.S. Glaznev, A. Elyas, A new methodology of studying the dynamics of water sorption under real operating conditions of AHPs: experiment. Int. J. Heat Mass Transf. 51, 4966–4972 (2008)CrossRef
52.
Zurück zum Zitat I.S. Girnik, Yu.I. Aristov, A HeCol cycle for upgrading the ambient heat: the dynamic verification of desorption stage. Int. J. HMT (2017) (submitted) I.S. Girnik, Yu.I. Aristov, A HeCol cycle for upgrading the ambient heat: the dynamic verification of desorption stage. Int. J. HMT (2017) (submitted)
53.
Zurück zum Zitat R. Strauss, K. Schallenberg, K.F. Knocke, Measurement of the kinetics of water vapor asorption into solid zeolite layers, in Proceedings of International Symposium on Solid Sorption Refrigeration, Paris, pp. 227–231 (1992) R. Strauss, K. Schallenberg, K.F. Knocke, Measurement of the kinetics of water vapor asorption into solid zeolite layers, in Proceedings of International Symposium on Solid Sorption Refrigeration, Paris, pp. 227–231 (1992)
54.
Zurück zum Zitat B. Dawoud, Y. Aristov, Experimental study on the kinetics of water vapor sorption on selective water sorbents, silica gel and alumina under typical operating conditions of sorption heat pumps. Int. J. Heat Mass Transf. 46, 273–281 (2003)CrossRef B. Dawoud, Y. Aristov, Experimental study on the kinetics of water vapor sorption on selective water sorbents, silica gel and alumina under typical operating conditions of sorption heat pumps. Int. J. Heat Mass Transf. 46, 273–281 (2003)CrossRef
Metadaten
Titel
Adsorptive Heat Transformation and Storage: Thermodynamic and Kinetic Aspects
verfasst von
Alessio Sapienza
Andrea Frazzica
Angelo Freni
Yuri Aristov
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-51287-7_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.