Skip to main content

Production of Hemicellulases, Xylitol, and Furan from Hemicellulosic Hydrolysates Using Hydrothermal Pretreatment

  • Chapter
  • First Online:
Hydrothermal Processing in Biorefineries

Abstract

Nowadays, manufacturing products (chemicals, fuels, and other value-added products) from renewable sources (such as lignocellulosic biomass) is one of the main challenges which the society has to face in order to achieve a sustainable growth. Lignocellulosic biomass processing in a biorefinery approach is presented as an alternative and promising solution to achieve that by replacing the oil-based market. Hydrothermal treatment is recognized as the first step of a biorefinery since the hemicellulose fraction is easily solubilized and recovered, remaining a spent treated solid composed by cellulose and lignin. Hemicellulose (ramified polysaccharide composed by pentoses and hexoses) presents a great potential to be used as substrate for value-added product production, such as hemicellulases, xylitol, and furan-derived compounds. Hemicellulases are mainly produced from fungi and have application in several industrial sectors, but the high cost of enzymes is the main bottleneck in enzymatic conversion processes. Xylitol can be obtained by chemical or microbial synthesis from xylose. Currently, commercial xylitol has been obtained by chemical processes which generate pollutant degradation products. In the last years, biotechnological processes have received much interest in order to become more competitive and replace chemical synthesis. Moreover, furan-derived compounds are arising as alternative components of renewable fuel due to interesting features (higher heating values than gasoline) and as building blocks for chemical production (e.g., resins, polymers). This chapter will primarily cover the current scenario regarding hemicellulose-derived products, mainly hemicellulases, xylitol, and furan-derived compounds, as well as production processes, industrial applications, and world market focusing on the potential of hydrothermal treatment for the production of these products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Banat BMA, Nonklang S, Hoshida H, Akada R (2010) Random and targeted gene integrations through the control of non-homologous end joining in the yeast Kluyveromyces marxianus. Yeast 27:29–39

    Google Scholar 

  • Agirrezabal-Telleria I, Gandarias I, Arias PL (2014) Heterogeneous acid-catalysts for the production of furan-derived compounds (furfural and hydroxymethylfurfural) from renewable carbohydrate: a review. Catal Today 234:42–58

    Article  Google Scholar 

  • Agrawal R, Satlewal A, Gaur R, Mathur A, Kumar R, Gupta RP, Tuli DK (2015) Pilot scale pretreatment of wheat straw and comparative evaluation of commercial enzyme preparations for biomass saccharification and fermentation. Biochem Eng J 102:54–61

    Article  Google Scholar 

  • Ahmad I, Shim WY, Jeon WY, Yoon BH, Kim J (2012) Enhancement of xylitol production in candida tropicalis by co-expression of two genes involved in pentose phosphate pathway. Bioprocess Biosyst Eng 35(1–2):199–204

    Article  Google Scholar 

  • Alvira P, Negro MJ, Ballesteros M (2011) Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw. Bioresour Technol 102:4552–4558

    Article  Google Scholar 

  • Bahador A, Lesan S, Kashi N (2012) Effect of xylitol on cariogenic and beneficial oral streptococci: a randomized, double-blind crossover trial. Iran J Microbiol 4(2):75–81

    Google Scholar 

  • Bakri Y, Akeed Y, Thonart P (2012) Comparison between continuous and batch processing to produce xylanase by Penicillium canescens 10-10c. Braz J Chem Eng 29(3):441–447

    Article  Google Scholar 

  • Baudel HM, Abreu CAM, Zaror CZ (2005) Xylitol production via catalytic hydrogenation of sugarcane bagasse dissolving pulp liquid effluents over Ru/C catalyst. J Chem Technol Biotechnol 80:230–233

    Article  Google Scholar 

  • Berlin A, Maximenko V, Gilkes N, Saddler J (2007) Optimization of enzyme complexes for lignocellulosic hydrolysis. Biotechnol Bioeng 77:287–295

    Article  Google Scholar 

  • Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Román-Leshkov Y, Hwang S-J, Palsdottir A, Silverman D, Lobo RF, Curtiss LA, Davis ME (2012) Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites. Proc Natl Acad Sci U S A 109(25):9727–9732

    Article  Google Scholar 

  • Betini JHA, Michelin M, Peixoto-Nogueira SC, Jorge JA, Terenzi HF, Polizeli MLTM (2009) Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosyst Eng 32:819–824

    Article  Google Scholar 

  • Bicker M, Kaiser D, Vogel H (2003) Dehydration of fructose to 5-hydroxymethylfurfural in sub and supercritical acetone. Green Chem 5:280–284

    Article  Google Scholar 

  • Biosen A, Christensen TB, Fu W, Gorbanev YY, Hansem TS, Jensen JS, Klitgaard SK, Pedersena S, Riisagerc A, Stahlbergc T, Woodleyb JM (2009) Process integration for the conversion of glucose to 2,5-furandicarboxylic acid. Chem Eng Res Design 87(9):1318–1327

    Article  Google Scholar 

  • Bozell JJ (2008) Feedstocks for the future—biorefinery production of chemicals from renewable carbon. Clean 36:641–647

    Google Scholar 

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  Google Scholar 

  • Buckeridge MS, Santos HP, Tiné MAS (2000) Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiol Biochem 38:141–156

    Article  Google Scholar 

  • Buckeridge MS (2010) Seed cell wall storage polysaccharides: models to understand cell wall bio-synthesis and degradation. Plant Physiol 154:1017–1023

    Article  Google Scholar 

  • Bura R, Chandra RP, Saddler J (2009) Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar. Biotechnol Prog 25:314–322

    Article  Google Scholar 

  • Camassola M, Dillon AJP (2014) Effect of different pretreatment of sugar cane bagasse on cellulase and xylanases production by the mutant Penicillium echinulatum 9A02S1 grown in submerged culture. Biomed Res Int 2014:1–9

    Article  Google Scholar 

  • Cannella D, Hsieh CW, Felby C, Jørgensen H (2012) Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content. Biotechnol Biofuels 5(1):26

    Article  Google Scholar 

  • Carvalheiro F, Duarte LC, Lopes S, Parajó JC, Pereira H, Gírio FM (2005) Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem 40(3–4):1215–1223

    Article  Google Scholar 

  • Chen X, Jiang Z, Chen S, Qin W (2010) Microbial and bioconversion production of D-xylitol and its detection and application. Int J Biol Sci 6(7):834–844

    Article  Google Scholar 

  • Cheng H, Lv J, Wang H, Wang B, Li Z, Deng Z (2014) Genetically engineered Pichia pastoris yeast for conversion of glucose to xylitol by a single-fermentation process. Appl Microbiol Biotechnol 98(8):3539–3552

    Article  Google Scholar 

  • Choudhary V, Sandler SI, Vlachos DG (2012) Conversion of xylose to furfural using Lewis and Bronsted acid catalysts in aqueous media. ACS Catal 2(9):2022–2028

    Article  Google Scholar 

  • Choudhary V, Mushrif SH, Ho C, Anderko A, Nilolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG (2013) Insights into the interplay of Lewis and Bronsted catalysts in glucose and fructose conversion to 5-(hydroxymethyl) furfural and levunic acid in aqueous media. J Am Chem Soc 135:3997–4006

    Article  Google Scholar 

  • Converti A, Domínguez JM, Perego P, Da Silva SS, Zilli M (2000) Wood hydrolysis and hydrolysate detoxification for subsequent xylitol production. Chem Eng Technol 23(11):1013–1020

    Article  Google Scholar 

  • Demirabas A (2008) Products from lignocellulosic materials via degradation process. Energy Sources Part A 30(1):27–37

    Article  Google Scholar 

  • Deng A, Ren J, Li H, Peng F, Sun R (2015) Corncob lignocellulose for the production of furfural by hydrothermal pretreatments and heterogeneous catalytic process. RSC Adv 5:60264

    Article  Google Scholar 

  • Dhar KS, Wendisch VF, Nampoothiri KM (2016) Engineering of Corynebacterium glutamicum for xylitol production from lignocellulosic pentose sugars. J Biotechnol 230:63–71

    Article  Google Scholar 

  • Dias AS, Pillinger M, Valente AA (2005) Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts. J Catal 229(2):414–423

    Article  Google Scholar 

  • Dien BS, Ximenes EA, O’Bryan PJ, Moniruzzaman M, Li X-L, Balan V, Dale B, Cotta MA (2008) Enzyme characterization for hydrolysis of AFEX and liquid hot-water pretreated distillers’ grains and their conversion to ethanol. Bioresour Technol 99:5216–5225

    Article  Google Scholar 

  • Diz J, Cruz JM, Domínguez H, Parajó JC (2002) Xylitol production from eucalyptus wood hydrolysates in low-cost fermentation media. Food Technol Biotechnol 40(3):191–197

    Google Scholar 

  • Dominguez JM, Cao N, Gong CS, Tsao GT (1997) Dilute acid hemicellulose hydrolysates from corn cobs for xylitol production by yeast. Bioresour Technol 61(1):85–90

    Article  Google Scholar 

  • Duarte LC, Carvalheiro F, Lopes S, Marques S, Parajó JC, Gírio FM (2004) Comparison of two posthydrolysis processes of Brewery’s spent grain autohydrolysis liquor to produce a pentose-containing culture medium. Appl Biochem Biotechnol 113–116:1041–1058

    Article  Google Scholar 

  • DuPont/Genencor. http://www.biosciences.dupont.com

  • Duranová M, Spániková S, Wosten HAB, Biely P, de Vries RP (2009) Two glucuronoyl esterases of Phanerochaete chrysosporium. Arch Microbiol 191:133–140

    Article  Google Scholar 

  • Edgar WM, Dodds MW (1985) The effect of sweeteners on acid production in plaque. Int Dent J 35(1):18–22

    Google Scholar 

  • Eseyin AE, Steele PH (2015) An overview of the applications of furfural and its derivatives. Int J Adv Chem 3(2):42–47

    Article  Google Scholar 

  • Freedonia. http://www.freedoniagroup.com/DocumentDetails.aspx?ReferrerId=FG-01&studyid=3104

  • Gairola K, Smirnova I (2012) Hydrothermal pentose to furfural conversion and simultaneous extraction with S-CO2-kinetics and application to biomass hydrolysates. Bioresour Technol 123:592–598

    Article  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202

    Article  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  Google Scholar 

  • Guo X, Zhang R, Li Z, Dai D, Li C, Zhou X (2013) A novel pathway construction in Candida tropicalis for direct xylitol conversion from corncob xylan. Bioresour Technol 128:547–552

    Article  Google Scholar 

  • Harris PV, Xu F, Kreel NE, Kang C, Fukuyama S (2014) New enzyme insights drive advances in commercial ethanol production. Curr Opin Chem Biol 19:162–170

    Article  Google Scholar 

  • Hideno A, Inoue H, Tsukahara K, Yano S, Fang X, Endo T, Sawayama S (2011) Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source. Enzyme Microb Technol 48:162–168

    Article  Google Scholar 

  • Hu S, Zhang Z, Zhou Y, Han B, Fan H, Li W, Song J, Xie Y (2008) Conversion of fructose to 5-hydromethylfurfural using ionic liquids prepared from renewable materials. Green Chem 10(12):1280–1283

    Article  Google Scholar 

  • Imman S, Arnthong J, Burapatana V, Laosiripojana N, Champreda V (2013) Autohydrolysis of tropical agricultural residues by compressed liquid hot water pretreatment. Appl Biochem Biotechnol 170:1982–1995

    Article  Google Scholar 

  • Jo J, Oh S, Lee H, Park Y, Seo J (2015) Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae. Biotechnol J 10(12):1935–1943

    Article  Google Scholar 

  • Jönsson LJ, Palmqvist E, Nilvebrandt NO, Hahn-Hägeldal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697

    Article  Google Scholar 

  • Juhász T, Szengyel Z, Réczey K, Siika-Aho M, Viikari L (2005) Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem 40:3519–3525

    Article  Google Scholar 

  • Juturu V, Wu JC (2013) Insight into microbial hemicellulases other than xylanases: a review. J Chem Technol Biotechnol 88:353–363

    Article  Google Scholar 

  • Ko BS, Kim D, Yoon BH, Bai S, Lee HY, Kim JH, Kim I (2011) Enhancement of xylitol production by attenuation of intracellular xylitol dehydrogenase activity in Candida tropicalis. Biotechnol Lett 33(6):1209–1213

    Article  Google Scholar 

  • Kovacs K, Macrelli S, Szakacs G, Zacchi G (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnol Biofuels 2:14

    Article  Google Scholar 

  • Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    Article  Google Scholar 

  • Lang K (1971) Xylitol, its metabolism and clinical use. Klin Wochenschrift 49:233–245

    Article  Google Scholar 

  • Lee JM, Jameel H, Venditti RA (2010) One and two stage autohydrolysis pretreatments for enzyme hydrolysis of coastal Bermuda grass to produce fermentable sugars. Bioresources 5(3):1496–1508

    Google Scholar 

  • Li S, Yang X, Yang S, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2(3):1–11

    Google Scholar 

  • Li Z, Qu H, Li C, Zhou X (2013) Direct and efficient xylitol production from xylan by Saccharomyces cerevisiae through transcriptional level and fermentation processing optimizations. Bioresour Technol 149:413–419

    Article  Google Scholar 

  • Lin YC, Huber GW (2009) The critical role of heterogeneous catalysis in lignocellulosic biomass conversion. Energy Environ Sci 2(1):68–80

    Article  Google Scholar 

  • Livesey G (2003) Health potential of polyols as sugar replacers, with emphasis on low glycaemic properties. Nutr Res Rev 16:163–191

    Article  Google Scholar 

  • Lopes de Souza R, Yu H, Rataboul F, Essayem N (2012) 5-Hydroxymethylfurfural (5-HMF) production from hexoses: limits of heterogenoeius catalusis in hydrotheraml condition and potential of concentrated aqueous organics acids as reactive solvent system. Challenges 3(2):212–232

    Article  Google Scholar 

  • López F, García MT, Feria MJ, García JC, Diego CM, Zamudio MAM, Díaz MJ (2014) Optimization of furfural production by acid hydrolysis of Eucalyptus globulus in two stages. Chem Eng J 240:195–201

    Article  Google Scholar 

  • Maguire A (2012) Dental health. In: Mitchell H (ed) Sweeteners and sugar alternatives in food technology. Blackwell, Oxford, pp 27–61

    Chapter  Google Scholar 

  • Maitan-Alfenas GP, Visser EM, Alfenas RF, Nogueira BRG, de Campos GG, Milagres AF, de Vries RP, Guimarães VM (2015) The influence of pretreatment methods on saccharification of sugarcane bagasse by an enzyme extract from Chrysoporthe cubensis and commercial cocktails: a comparative study. Bioresour Technol 192:670–676

    Article  Google Scholar 

  • Mäkinen KK (2000) Can the pentitol-hexitol theory explain the clinical observations made with xylitol? Med Hypotheses 54:603–613

    Article  Google Scholar 

  • Marcotullio G, De Jong E (2010) Chloride ions enhance furfural formation from d-xylose in dilute aqueous acid solutions. Green Chem 12(10):1739–1746

    Article  Google Scholar 

  • Marialetti T, Valenzuela-Olarte MB, Sievers C, Hoskins TJC, Agrawal PK, Jones CW (2008) Dilute acid hydrolysis of Loblolly Pine: a comprehesive approach. Appl Chem 47:7131–7140

    Google Scholar 

  • Markets and Markets. http://www.marketsandmarkets.com/PressReleases/industrial-enzymes.asp

  • Michelin M, Teixeira JA (2016) Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtained thereof. Bioresour Technol 216:862–869

    Article  Google Scholar 

  • Michelin M, Peixoto-Nogueira SC, Betini JHA, Silva TM, Jorge JA, Terenzi HF, Polizeli MLTM (2010) Production and properties of xylanases from Aspergillus terricola Marchal and Aspergillus ochraceus and their use in cellulose pulp bleaching. Bioprocess Biosyst Eng 33:813–821

    Article  Google Scholar 

  • Michelin M, Polizeli MLTM, Silva DP, Ruzene DS, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2011) Production of xylanolytic enzymes by Aspergillus terricola in stirred tank and airlift tower loop bioreactors. J Ind Microbiol Biotechnol 38:1979–1984

    Article  Google Scholar 

  • Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Ruiz HA, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2012a) Production of xylanase and β-xylosidase from autohydrolysis liquor of corncob using two fungal strains. Bioprocess Biosyst Eng 35:1185–1192

    Article  Google Scholar 

  • Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Vicente AA, Jorge JA, Terenzi HF, Teixeira JA (2012b) Xylanase and β-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor. Appl Biochem Biotechnol 166:336–347

    Article  Google Scholar 

  • Michelin M, Polizeli MLTM, Ruzene DS, Silva DP, Teixeira JA (2013) Application of lignocellulosic residues in the production of cellulase and hemicellulases from fungi. In: Polizeli MLTM, Rai M (eds) Fungal enzymes. CRC Press, Boca Raton, pp 31–64

    Google Scholar 

  • Mikkola JP, Vainio H, Salmi T, Sjöholm R, Ollonqvist T, Väyrynen J (2000) Deactivation kinetics of Mo-supported Raney Ni catalyst in the hydrogenation of xylose to xylitol. Appl Catal A Gen 196:143–155

    Article  Google Scholar 

  • Miller TL, Churchill BW (1986) Substrates for large-scale fermentations. In: Demain AL, Solomon LA (eds) Manual of industrial microbiology and biotechnology. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Moreu C, Finiels A, Vanoye L (2006) Dehydration of fructose and sucrose into 5-hydroxymethylfurfural in the presence of 1-H-3-methyl imidazolium chloride acting both as solvent and catalyst. J Mol Catal A Chem 253:165–169

    Article  Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986–1993

    Article  Google Scholar 

  • Murnen HK, Balan V, Chundawat SPS, Bals B, Sousa LDC, Dale BE (2007) Optimization of ammonia fiber expansion (AFEX) pretreatment and enzymatic hydrolysis of Miscanthus x giganteus to fermentable sugars. Biotechnol Prog 23:846–850

    Article  Google Scholar 

  • Nigam P, Singh D (1995) Processes for fermentative production of xylitol-a sugar substitute. Process Biochem 30:117–124

    Google Scholar 

  • Nobre A, Lucas T, Leão C (1999) Transport and utilization of hexoses and pentoses in the halotolerant yeast Debaryomyces hansenii. Appl Environ Microbiol 65:3594–3598

    Google Scholar 

  • Novozymes. https://www.novozymes.com/en

  • Oh EJ, Ha S, Rin-Kim S, Lee W, Galazka JM, Cate JHD, Jin Y (2013) Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab Eng 15(1):226–234

    Article  Google Scholar 

  • Ohgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98:2503–2510

    Article  Google Scholar 

  • Oliveira C, Carvalho V, Domingues L, Gama FM (2015) Recombinant CBM-fusion technology-applications overview. Biotechnol Adv 33(3–4):358–369

    Article  Google Scholar 

  • Ottenheim C, Verdejo C, Zimmermann W, Wu JC (2014) Hemicellulase production by Aspergillus niger DSM 26641 in hydrothermal palm oil empty fruit bunch hydrolysate and transcriptome analysis. J Biosci Bioeng 118(6):696–701

    Article  Google Scholar 

  • Parajó JC, Domínguez H, Domínguez JM (1997) Xylitol production from Eucalyptus wood hydrolyzates extracted with organic solvents. Process Biochem 7:599–604

    Article  Google Scholar 

  • Peixoto-Nogueira SC, Michelin M, Betini JHA, Jorge JA, Terenzi HF, Polizeli MLTM (2009) Production of xylanase by Aspergilli using alternative carbon sources: application of the crude extract on cellulose pulp biobleaching. J Ind Microbiol Biotechnol 36:149–155

    Article  Google Scholar 

  • Peleteiro S, Garrote G, Santos V, Parajó JC (2014) Furan manufacture from softwood hemicelluloses by aqueous fractionation and further reaction in a catalyzed ionic liquid: a biorefinery approach. J Clean Prod 76:200–203

    Article  Google Scholar 

  • Peleteiro S, Santos V, Garrote G, Parajó JC (2016) Furfural production from Eucalyptus wood using acid ionic liquid. Carbohydr Polym 146:20–25

    Article  Google Scholar 

  • Peng X, Qiao W, Mi S, Jia X, Su H, Han Y (2015) Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment. Biotechnol Biofuels 8(131):2–14

    Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  Google Scholar 

  • Pollet A, Delcour JA, Courtin CM (2010) Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families. Crit Rev Biotechnol 30:176–191

    Article  Google Scholar 

  • Povelainen M, Miasnikov AN (2007) Production of xylitol by metabolically engineered strains of Bacillus subtilis. J Biotechnol 128(1):24–31

    Article  Google Scholar 

  • Prakasham RS, Sreenivas RR, Hobbs PJ (2009) Current trends in biotechnology production of xylitol and future prospects. Curr Trends Biotechnol Pharm 3:8–36

    Google Scholar 

  • Qing Q, Wyman CE (2011) Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol Biofuels 4:18

    Article  Google Scholar 

  • Qing Q, Yang B, Wyman CE (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour Technol 101:9624–9630

    Article  Google Scholar 

  • Rasmussen H, Sorensen HR, Meyer AS (2014) Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms. Carbohydr Res 385:45–57

    Article  Google Scholar 

  • Ravella SR, Gallagher J, Fish S, Prakasham RS (2012) Overview on commercial production of xylitol, economic analysis and market trends. In: da Silva SS, Chandel AJ (eds) D-xylitol. Fermentative production, application and commercialization. Springer, Berlin, pp 291–306

    Google Scholar 

  • Rivas B, Domínguez JM, Domínguez H, Parajó JC (2002) Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzyme Microbial Technol 31(4):431–438

    Article  Google Scholar 

  • Rivas B, Torre P, Domínguez JM, Converti A, Parajó JC (2006) Purification of xylitol obtained by fermentation of corncob hydrolysates. J Agr Food Chem 54(12):4430–4435

    Article  Google Scholar 

  • Rivas S, González-Muñoz MJ, Vila C, Santos V, Parajó JC (2013) Manufacture of levulinic acid from pine wood hemicelluloses: kinetic assessment. Ind Eng Chem Res 52:3951–3957

    Article  Google Scholar 

  • Romaní A, Garrote G, Alonso JL, Parajo JC (2010) Experimental assessment on the enzymatic hydrolysis of hydrothermally pretreated Eucalyptus globulus wood. Ind Eng Chem Res 49:4653–4663

    Article  Google Scholar 

  • Romaní A, Ruiz HA, Pereira FB, Teixeira JA, Domingues L (2014) Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel 135:482–491

    Article  Google Scholar 

  • Rosatella AA, Simeonov SP, Frade RF, Afonso CAM (2011) 5-Hydroxymethylfurfural (HMF) as building block platform: biological properties, synthesis and synthetic applications. Green Chem 13:754

    Article  Google Scholar 

  • Rout PK, Nannaware AD, Prakash O, Kalra A, Rajasekharan R (2016) Synthesis of hydroxymethylfurfural from cellulose using green processes: a promising biochemical and biofuel feedstock. Chem Eng Sci 142:318–346

    Article  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sust Energ Rev 21:35–51

    Article  Google Scholar 

  • Salgado JM, Rodríguez N, Cortés S, Domínguez JM (2009) Development of cost-effective media to increase the economic potential for larger-scale bioproduction of natural food additives by Lactobacillus rhamnosus, Debaryomyces hansenii, and Aspergillus niger. J Agric Food Chem 57(21):10414–10428

    Article  Google Scholar 

  • Salgado JM, Carballo EM, Max B, Domínguez JM (2010) Characterization of vinasses from five certified brands of origin (CBO) and use as economic nutrient for the xylitol production by Debaryomyces hansenii. Bioresour Technol 101(7):2379–2388

    Article  Google Scholar 

  • Salgado JM, Rodríguez N, Cortés S, Domínguez JM (2012a) Coupling two sizes of CSTR-type bioreactors for sequential lactic acid and xylitol production from hemicellulosic hydrolysates of vineshoot trimmings. New Biotechnol 29(3):421–427

    Article  Google Scholar 

  • Salgado JM, Rodríguez N, Cortés S, Domínguez JM (2012b) Effect of nutrient supplementation of crude or detoxified concentrated distilled grape marc hemicellulosic hydrolysates on the xylitol production by Debaryomyces hansenii. Prep Biochem Biotechnol 42(1):1–14

    Article  Google Scholar 

  • Sanchez C, Serrano L, Andres MA, Labidi J (2013) Furfural production from corn cobs autohydrolysis liquors by microwave technology. Ind Crop Prod 42:513–519

    Article  Google Scholar 

  • Sangarunlert W, Piumsomboon P, Ngamprasertsith S (2007) Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk. Korean J Chem Eng 24:936–941

    Article  Google Scholar 

  • Segato F, Damásio ARL, Lucas RC, Squina FM, Prade RA (2014) Genomics review of holocellulose deconstruction by Aspergilli. Microbiol Mol Biol Rev 78(4):588–613

    Article  Google Scholar 

  • Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  Google Scholar 

  • Shi J, Ebrik MA, Yang B, Garlock RJ, Balan V, Dale BE, Pallapolu VR, Lee YY, Kim Y, Mosier NS, Ladisch MR, Holtzapple MT, Falls M, Sierra-Ramirez R, Donohoe BS, Vinzant TB, Elander RT, Hames B, Thomas S, Warner RE, Wyman CE (2011) Application of cellulase and hemicellulase to pure xylan, pure cellulose, and switchgrass solids from leading pretreatments. Bioresour Technol 102:11080–11088

    Article  Google Scholar 

  • Singhania RR, Sukumarana RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases—review. Enzyme Microb Technol 46:541–549

    Article  Google Scholar 

  • Sirisansaneeyakul S, Staniszewski M, Rizzi M (1995) Screening of yeasts for production of xylitol from D-xylose. J Ferment Bioeng 80:565–570

    Article  Google Scholar 

  • Su B, Wu M, Zhang Z, Lin J, Yang L (2015) Efficient production of xylitol from hemicellulosic hydrolysate using engineered Escherichia coli. Metab Eng 31:112–122

    Article  Google Scholar 

  • Sun X, Liu Z, Qu Y, Li X (2008) The effects of wheat bran composition on the production of biomass-hydrolyzing enzymes by Penicillium decumbens. Appl Biochem Biotechnol 146:119–128

    Article  Google Scholar 

  • Suxia R, Haiyan X, Jinling Z, Shunqing L, Xiaofeng H, Tingzhou L (2012) Furfural production from rice husk using sulfuric acid and a solida cid catalyst through a two-stage process. Carbohydr Res 359:1–6

    Article  Google Scholar 

  • Sweeney MD, Xu F (2012) Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: recent developments—review. Catalogue 2:244–263

    Google Scholar 

  • Takata E, Tsuruoka T, Tsutsumi K, Tsutsumi Y, Tabata K (2014) Production of xylitol and tetrahydrofurfuryl alcohol from xylan in napier grass by a hydrothermal process with phosphorus oxoacids followed by aqueous phase hydrogenation. Bioresour Technol 167:74–80

    Article  Google Scholar 

  • TechNavio (2015) Global Xylitol Market 2016 analysis and forecasts to 2020

    Google Scholar 

  • Teter SA, Sutton KB, Emme B (2014) Enzymatic processes and enzyme development in biorefining. In: Waldron KW (ed) Advances in biorefineries: biomass and waste supply chain exploitation. Elsevier, New York, pp 199–233

    Chapter  Google Scholar 

  • Vázquez M, Oliva M, Tellez-Luis SJ, Ramirez JA (2007) Hydrolysis of sorghum straw phosphoric acid: evaluation of furfural production. Bioresour Technol 98:3053–3060

    Article  Google Scholar 

  • Verardi A, De Bari I, Ricca E, Calabrò V (2012) Hydrolysis of lignocellulosic biomass: current status of processes and technologies and future perspectives. In: Lima MAP, Natalense APP (eds) Bioethanol. InTech Publisher, Rijeka, pp 95–122

    Google Scholar 

  • Wolever TMS, Piekarz A, Hollands M, Younker K (2002) Sugar alcohols and diabetes: a review. Can J Diabetes 26:356–362

    Google Scholar 

  • Xing R, Qi W, Huber GW (2011) Production of furfural and carboxylic acids from waste aqueous hemicellulose solutions from the pulp and paper and cellulosic. Ind Energy Environ Sci 4:2193–2205

    Article  Google Scholar 

  • Xu N, Gong J, Huang Z (2016) Review on the production methods and fundamental combustion characteristics of furan derivatives. Renew Sust Energy Rev 54:1189–1211

    Article  Google Scholar 

  • Yañez R, Romaní A, Garrote G, Alonso L, Parajó JC (2009) Processing of acacia dealbata in aqueous media: first step of a wood biorefinery. Ind Eng Chem Res 48(14):6618–6626

    Article  Google Scholar 

  • Yang Y, Hu C-W, Abu-Omar MM (2012) Synthesis of furfural from xylose, xylan and biomass using AlCl3·6H2O in biphasic media via xylose isomerization to xylulose. ChemSusChem 5:405–410

    Article  Google Scholar 

  • Zeitsch KJ (2000) Furfural production needs chemical innovation. Chem Innov 30:29–32

    Google Scholar 

  • Zha J, Li B, Shen M, Hu M, Song H, Yuan Y (2013) Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae. PLoS One 8(7):e68317

    Article  Google Scholar 

  • Zhang L, Liu Y, Niu X, Liu Y, Liao W (2012) Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis. Biomass Bioenergy 37:16–24

    Article  Google Scholar 

  • Zhang J, Li S, Xu H, Zhou P, Zhang L, Ouyang P (2013a) Purification of xylitol dehydrogenase and improved production of xylitol by increasing XDH activity and NADH supply in Gluconobacter oxydans. J Agric Food Chem 61(11):2861–2867

    Article  Google Scholar 

  • Zhang L, Yu H, Wang P, Dong H, Peng X (2013b) Conversion of xylan, D-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid. Bioresour Technol 130:110–116

    Article  Google Scholar 

  • Zhang J, Zhang B, Wang D, Gao X, Hong J (2015) Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Bioresour Technol 175:642–645

    Article  Google Scholar 

  • Zhang B, Zhang J, Wang D, Han R, Ding R, Gao X, Sun L, Hong J (2016) Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus. Bioresour Technol 216:227–237

    Article  Google Scholar 

  • Zhong C, Lau MW, Balan V, Dale B, Yuan Y (2009) Optimization of enzymatic hydrolysis and ethanol fermentation from AFEX-treated rice straw. Appl Microbiol Biotechnol 84:667–676

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte. Michele Michelin and José Salgado are recipients of FCT fellowships (SFRH/BPD/100786/2014 and SFRH/BPD/84440/2012, respectively). Aloia Romaní thanks Xunta of Galicia for her postdoctoral fellowship (Plan, I2C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Michelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Michelin, M., Romaní, A., Salgado, J.M., Domingues, L., Teixeira, J.A. (2017). Production of Hemicellulases, Xylitol, and Furan from Hemicellulosic Hydrolysates Using Hydrothermal Pretreatment. In: Ruiz, H., Hedegaard Thomsen, M., Trajano, H. (eds) Hydrothermal Processing in Biorefineries. Springer, Cham. https://doi.org/10.1007/978-3-319-56457-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56457-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56456-2

  • Online ISBN: 978-3-319-56457-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics