Skip to main content

Measuring Metacognitive Modelling Competencies

  • Chapter
  • First Online:
Mathematical Modelling and Applications

Abstract

Following the discussion about modelling competency as well as respective research results, metacognitive competencies are considered to be an essential component of modelling competency. Until now, there is no method or instrument to reliably measure metacognitive modelling competencies of larger groups of students. In this chapter, different methods for measuring metacognitive modelling competencies are discussed. In addition, results of a design-based process aiming for the development of a questionnaire for measuring metacognitive modelling competencies as well as selected items of the questionnaire are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 15–30). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), Proceedings of the 12th international congress on mathematical education (pp. 73–96). Cham: Springer International.

    Google Scholar 

  • Brown, A. L. (1978). Knowing when, where, and how to remember: A problem of metacognition. In R. Glaser (Ed.), Advances in instructional psychology (pp. 77–165). Hillsdale: Erlbaum.

    Google Scholar 

  • Cohors-Fresenborg, E., Kramer, S., Pundsack, F., Sjuts, J., & Sommer, N. (2010). The role of metacognitive monitoring in explaining differences in mathematics achievement. ZDM Mathematics Education, 42(2), 231–244.

    Article  Google Scholar 

  • Flavell, J. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906–911.

    Article  Google Scholar 

  • Goos, M. (1998). “I don’t know if I’m doing it right or I’m doing it wrong!”: Unresolved uncertainty in the collaborative learning of mathematics. In C. Kanes, M. Goos, & E. Warren (Eds.), Proceedings of MERGA 22 (pp. 225–232). Brisbane: Mathematics Education Research Group of Australasia.

    Google Scholar 

  • Hasselhorn, M. (1992). Metakognition und Lernen. In G. Nold (Ed.), Lernbedingungen und Lernstrategien. Welche Rolle spielen kognitive Verstehensstrukturen? (pp. 35–63). Narr: Tübingen.

    Google Scholar 

  • Janetzko, H.G. (2014). Entwicklung eines Instruments zur Erhebung metakognitiver Strategien beim Modellieren (Masters thesis). University of Hamburg, Hamburg.

    Google Scholar 

  • Kaiser, G. (2007). Modelling and modelling competencies in school. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12). Education, engineering and economics (pp. 110–119). Horwood: Chichester.

    Chapter  Google Scholar 

  • Kaiser, G., & Stender, P. (2013). Complex modelling problems in co-operative, self-directed learning environments. In G. A. Stillman, G. Kaiser, W. Blum, & J. P. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 277–293). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning. A project of the National Council of Teachers of Mathematics (pp. 763–804). Charlotte: Information Age Publishing.

    Google Scholar 

  • Lingel, K., Götz, L., Artelt, C., & Schneider, W. (2014). Mathematisches Strategiewissen für fünfte und sechste Klassen: MAESTRA 5-6+. Hogrefe-Schultests. Göttingen: Hogrefe.

    Google Scholar 

  • Maaß, K. (2006). What are modelling competencies? Zentralblatt für Didaktik der Mathematik, 38(2), 113–142.

    Article  Google Scholar 

  • Mayring, P. H. (2014). Qualitative content analysis. Theoretical foundation, basic procedures and software solution. (free download via Social Science Open Access Repository SSOAR, URN: http://nbn-resolving.de/urn:nbn:de:0168-ssoar-395173).

  • Mevarech, Z., & Kramarski, B. (1997). IMPROVE: A multidimensional method for teaching mathematics in heterogeneous classrooms. American Educational Research Journal, 34(2), 365–394.

    Article  Google Scholar 

  • Rakoczy, K., & Klieme, E. (2005). Dokumentation der Erhebungs- und Auswertungsinstrumente zur schweizerisch-deutschen Videostudie. “Unterrichtsqualität, Lernverhalten und mathematisches Verständnis”: 1, Befragungsinstrumente. Frankfurt: GFPF.

    Google Scholar 

  • Schellings, G. L. M., van Hout-Wolters, B., Veenman, M., & Meijer, J. (2013). Assessing metacognitive activities: The in-depth comparison of a task-specific questionnaire with think-aloud protocols. European Journal of Psychology of Education, 28(3), 963–990.

    Article  Google Scholar 

  • Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM Mathematics Education, 42(2), 149–161.

    Article  Google Scholar 

  • Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). New York: MacMillan.

    Google Scholar 

  • Schröder, L. (2014). Metakognitive Kompetenzen von Schülerinnen und Schülern beim Bearbeiten mathematischer Modellierungsaufgaben (Masters Thesis). University of Hamburg, Hamburg.

    Google Scholar 

  • Schukajlow, S., & Leiß, D. (2011). Selbstberichtete Strategienutzung und mathematische Modellierungskompetenz. Journal für Mathematikdidaktik, 32, 53–77.

    Article  Google Scholar 

  • Stillman, G. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In G. Kaiser, W. Blum, R. Borroemo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 165–180). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Stillman, G., Galbraith, P., Brown, J., & Edwards, I. (2007). A framework for success in implementing mathematical modelling in the secondary classroom. In J. Watson & K. Beswick (Eds.), Proceedings of MERGA 30 (pp. 688–707). Adelaide: Mathematics Education Research Group of Australasia.

    Google Scholar 

  • Veenman, M. (2005). The assessment of metacognitive skills: What can be learned from multi-method designs? In C. Artelt & B. Moschner (Eds.), Lernstrategien und Metakognition: Implikationen für Forschung und Praxis (pp. 77–99). Münster: Waxmann.

    Google Scholar 

  • Veenman, M. (2011). Alternative assessment of strategy use with self-report instruments: A discussion. Metacognition and Learning, 6(2), 205–211.

    Article  Google Scholar 

  • Veenman, M., Hout-Wolters, B., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1(1), 3–14.

    Article  Google Scholar 

  • Verschaffel, L. (1999). Realistic mathematical modelling and problem solving in the upper elementary school: Analysis and improvement. In J. H. M. Hamers, J. E. H. van Luit, & B. Csapó (Eds.), Contexts of learning: Teaching and learning thinking skills (pp. 215–240). Lisse: Swets & Zeitlinger.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Vorhölter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vorhölter, K. (2017). Measuring Metacognitive Modelling Competencies. In: Stillman, G., Blum, W., Kaiser, G. (eds) Mathematical Modelling and Applications. International Perspectives on the Teaching and Learning of Mathematical Modelling. Springer, Cham. https://doi.org/10.1007/978-3-319-62968-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62968-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62967-4

  • Online ISBN: 978-3-319-62968-1

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics