Skip to main content

New Approaches to CPV Optics

  • Chapter
  • First Online:
Concentrating Photovoltaics (CPV): The Path Ahead

Part of the book series: Green Energy and Technology ((GREEN))

  • 666 Accesses

Abstract

We first discussed the constraints imposed by using concentrator optics in the first chapter, where we noted that a fundamental, thermodynamic limit to concentration exists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winston, R., Miñano, J. C., & Benitez, P. G. (2005). Nonimaging optics. (Academic Press, 2005).

    Google Scholar 

  2. Markman, B., Ranade, R., & Giebink, N. (2012). Nonimaging optics in luminescent solar concentration. Optics Express, 20, A622–A629.

    Article  Google Scholar 

  3. Markvart, T. (2008). The thermodynamics of optical étendue. Journal of Optics A: Pure and Applied Optics, 10, 015008.

    Article  Google Scholar 

  4. Winston, R., & Gordon, J. M. (2005). Planar concentrators near the étendue limit. Optics Letters, 30, 2617–2619.

    Article  Google Scholar 

  5. Winston, R. (1974). Principles of solar concentrators of a novel design. Solar Energy, 16, 89–95.

    Article  Google Scholar 

  6. Rabl, A. (1976). Comparison of solar concentrators. Solar Energy, 18, 93–111.

    Article  Google Scholar 

  7. Antonini, A., et al. (2009). Rondine® PV concentrators: Field results and developments. Progress in Photovoltaics: Research and Applications, 17, 451–459.

    Article  Google Scholar 

  8. Shanks, K., Senthilarasu, S., & Mallick, T. K. (2016). Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renewable and Sustainable Energy Reviews, 60, 394–407.

    Article  Google Scholar 

  9. Galilei, G. (1744). Dialogo dove ne i congressi di quattro giornate si discorre sopra i due massimi sistemi del mondo Tolemaico, e Copernicano… in questa impressione migliorato ed accpeciuti sopra l’exemplare dell’autore stesso. (Stamperia del Seminario, 1744).

    Google Scholar 

  10. Buie, D., Monger, A., & Dey, C. (2003). Sunshape distributions for terrestrial solar simulations. Solar Energy, 74, 113–122.

    Article  Google Scholar 

  11. Stevenson, R. (2015). Turning To Ultra-High Concentrations To Increase The Competitiveness Of CPV in Compound Semiconductor.

    Google Scholar 

  12. Stefancich, M., et al. (2012). Single element spectral splitting solar concentrator for multiple cells CPV system. Optics Express, 20, 9004–9018.

    Article  Google Scholar 

  13. Kraemer, D., et al. (2011). High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nature Materials, 10, 532–538.

    Article  Google Scholar 

  14. Crisostomo, F., et al. (2015). Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector. Applied Energy, 141, 238–246.

    Article  Google Scholar 

  15. Yamada, N., & Hirai, D. (2016). Maximization of conversion efficiency based on global normal irradiance using hybrid concentrator photovoltaic architecture. Progress in Photovoltaics: Research and Applications.

    Google Scholar 

  16. Chemisana, D., Rosell, J., Riverola, A., & Lamnatou, C. (2016). Experimental performance of a Fresnel-transmission PVT concentrator for building-façade integration. Renewable Energy, 85, 564–572.

    Article  Google Scholar 

  17. Horowitz, K., Woodhouse, M., Lee, H., & Smestad, G. (2015). Bottom-Up Cost Analysis of a High Concentration PV Module; NREL (National Renewable Energy Laboratory). (NREL (National Renewable Energy Laboratory (NREL), Golden, CO (United States)), 2015).

    Google Scholar 

  18. Chiu, P. et al. (2014). In Photovoltaic Specialist Conference (PVSC), 2014 IEEE 40th. 0011–0013 (IEEE).

    Google Scholar 

  19. Fraunhofer, I. S. E. (2014). New world record for solar cell efficiency at 46%. Press Release.

    Google Scholar 

  20. Dimroth, F., et al. (2014). Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications, 22, 277–282.

    Article  Google Scholar 

  21. Marti, A., & Araújo, G. L. (1996). Limiting efficiencies for photovoltaic energy conversion in multigap systems. Solar Energy Materials and Solar Cells, 43, 203–222.

    Article  Google Scholar 

  22. Kang, D. W., Takiguchi, Y., Sichanugrist, P., & Konagai, M. (2016). InGaP//GaAs//c-Si 3-junction solar cells employing spectrum-splitting system. Progress in Photovoltaics: Research and Applications, 24, 1016–1023. doi:10.1002/pip.2753.

    Article  Google Scholar 

  23. Kosten, E. D., Warmann, E. C., Lloyd, J., & Atwater, H. A. (2013). In SPIE Solar Energy + Technology. 882109-882109-882103 (International Society for Optics and Photonics).

    Google Scholar 

  24. Antonini, A. et al. In Proc. 5th World Conference on Photovoltaic Energy Conversion. 6–10.

    Google Scholar 

  25. Escarra, M. D., Darbe, S., Warmann, E. C., & Atwater, H. In Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th. 1852–1855 (IEEE).

    Google Scholar 

  26. Mojiri, A., Taylor, R., Thomsen, E., & Rosengarten, G. (2013). Spectral beam splitting for efficient conversion of solar energy—A review. Renewable and Sustainable Energy Reviews, 28, 654–663.

    Article  Google Scholar 

  27. Imenes, A., & Mills, D. (2004). Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review. Solar Energy Materials and Solar Cells, 84, 19–69.

    Article  Google Scholar 

  28. Carlo, M., Matteo, C., & Marco, S. (2015). Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system. Journal of Optics, 17, 105901.

    Article  Google Scholar 

  29. Keevers, M. J. et al. (2015). High Efficiency Spectrum Splitting Prototype Submodule Using Commercial CPV Cells.

    Google Scholar 

  30. Goetzberger, A., Goldschmidt, J., Peters, M., & Löper, P. (2008). Light trapping, a new approach to spectrum splitting. Solar Energy Materials and Solar Cells, 92, 1570–1578.

    Article  Google Scholar 

  31. Abdelhamid, M., et al. (2016). Novel double-stage high-concentrated solar hybrid photovoltaic/thermal (PV/T) collector with nonimaging optics and GaAs solar cells reflector. Applied Energy, 182, 68–79.

    Article  Google Scholar 

  32. Zheng, C., Li, Q., Rosengarten, G., Hawkes, E., & Taylor, R. A. (2014). In Optics for Solar Energy. RTu3B. 2 (Optical Society of America).

    Google Scholar 

  33. Dyson, A. H., Rh, P., Michael, S., & Jensen, K. (2007). Integrated concentrating (IC) Solar façade system.

    Google Scholar 

  34. Kosten, E. D., Atwater, J. H., Parsons, J., Polman, A., & Atwater, H. A. (2013). Highly efficient GaAs solar cells by limiting light emission angle. Light: Science & Applications 2, e45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Apostoleris .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Apostoleris, H., Stefancich, M., Chiesa, M. (2018). New Approaches to CPV Optics. In: Concentrating Photovoltaics (CPV): The Path Ahead. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62980-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62980-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62979-7

  • Online ISBN: 978-3-319-62980-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics