Skip to main content

2018 | OriginalPaper | Buchkapitel

8. Microbial Fuel Cell: Waste Minimization and Energy Generation

verfasst von : Mohammad Danish Khan, Nishat Khan, Saima Sultana, Mohammad Zain Khan, Suhail Sabir, Ameer Azam

Erschienen in: Modern Age Environmental Problems and their Remediation

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Microbial fuel cells (MFCs) have gained a recent attention as a mode of converting organic waste into electricity using variety of biodegradable substrate as fuel. Different designs of MFCs are available for different purposes, however dual and single chamber MFCs are common used for energy generation. Type of electrode materials, membrane, pH, electron transfer rate, reactor design and operating conditions affects the performance of MFC. Microbes actively catabolize substrate and transform their chemical energy into electrical energy. MFCs could be utilized as power generator in small devices such as biosensor, pacemakers and by doing small modification (Microbial Electrolysis Cell) can produce hydrogen a potential fuel in cathodic chamber. Besides the merits of this technology, it is still immature and faces practical limitations such as low power and current density. The construction and analysis of MFCs requires knowledge of different disciplines ranging from microbiology and electrochemistry to materials and environmental engineering. This article presents various aspects of MFC technology for proper understanding of the readers. This article present an extensive literature survey of some selected papers published on MFC technology in the last decade. Various practical solutions have been suggested to overcome the practical challenges of this technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aelterman P, Rabaey K, Schamphelaire LD, Clauwaert P, Boon N, Verstraete W (2008) Microbial fuel cells as an engineered ecosystem. In: Wall JD, Harwood CS, Demain AL (eds) Bioenergy ASM Press, Washington, DC, pp 307–322 Aelterman P, Rabaey K, Schamphelaire LD, Clauwaert P, Boon N, Verstraete W (2008) Microbial fuel cells as an engineered ecosystem. In: Wall JD, Harwood CS, Demain AL (eds) Bioenergy ASM Press, Washington, DC, pp 307–322
Zurück zum Zitat Akdeniz F (2002.) Recent energy investigations on fossil and alternative nonfossil resources in Turkey ll u 43 Akdeniz F (2002.) Recent energy investigations on fossil and alternative nonfossil resources in Turkey ll u 43
Zurück zum Zitat Babanova S, Hubenova Y, Mitov M (2011) Influence of artificial mediators on yeast-based fuel cell performance. J Biosci Bioeng 112:379–387CrossRef Babanova S, Hubenova Y, Mitov M (2011) Influence of artificial mediators on yeast-based fuel cell performance. J Biosci Bioeng 112:379–387CrossRef
Zurück zum Zitat Beecroft NJ, Zhao F, Varcoe JR et al (2012) Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Appl Microbiol Biotechnol 93:423–437CrossRef Beecroft NJ, Zhao F, Varcoe JR et al (2012) Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Appl Microbiol Biotechnol 93:423–437CrossRef
Zurück zum Zitat Biotechnology AM (1999) Ulllted States Patent (19) Biotechnology AM (1999) Ulllted States Patent (19)
Zurück zum Zitat Bond DR, Lovley DR (2003) Electricity production by Geobactersulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555CrossRef Bond DR, Lovley DR (2003) Electricity production by Geobactersulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555CrossRef
Zurück zum Zitat Catal T, Li K, Bermek H, Liu H (2008) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources 175:196–200 Catal T, Li K, Bermek H, Liu H (2008) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources 175:196–200
Zurück zum Zitat Chae K-J, Choi M-J, Lee J-W et al (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100:3518–3525CrossRef Chae K-J, Choi M-J, Lee J-W et al (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100:3518–3525CrossRef
Zurück zum Zitat Chaturvedi V, Verma P (2016) Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresour Bioprocess 3:1–14CrossRef Chaturvedi V, Verma P (2016) Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresour Bioprocess 3:1–14CrossRef
Zurück zum Zitat Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232CrossRef Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232CrossRef
Zurück zum Zitat Chookaew T, Prasertsan P, Ren ZJ (2014) Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. New Biotechnol 31:179–184CrossRef Chookaew T, Prasertsan P, Ren ZJ (2014) Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. New Biotechnol 31:179–184CrossRef
Zurück zum Zitat Clauwaert P, Rabaey K, Aelterman P et al (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360CrossRef Clauwaert P, Rabaey K, Aelterman P et al (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360CrossRef
Zurück zum Zitat Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482CrossRef Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482CrossRef
Zurück zum Zitat Elmekawy A, Srikanth S, Bajracharya S et al (2015) Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment. FRIN 73:213–225 Elmekawy A, Srikanth S, Bajracharya S et al (2015) Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment. FRIN 73:213–225
Zurück zum Zitat El-Naggar MY, Finkel SE (2013) “Live wires.” The Scientist 1 May. 2013 El-Naggar MY, Finkel SE (2013) “Live wires.” The Scientist 1 May. 2013
Zurück zum Zitat Fan Y, Han SK, Liu H (2012) Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ Sci 5:8273–8280CrossRef Fan Y, Han SK, Liu H (2012) Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ Sci 5:8273–8280CrossRef
Zurück zum Zitat Faria A, Gonçalves L, Martins G (2016) Resources recovery in the dairy industry: bioelectricity production using a continuous microbial fuel cell: 1–6 Faria A, Gonçalves L, Martins G (2016) Resources recovery in the dairy industry: bioelectricity production using a continuous microbial fuel cell: 1–6
Zurück zum Zitat Gil G-C, Chang I-S, Kim BH et al (2003) Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334CrossRef Gil G-C, Chang I-S, Kim BH et al (2003) Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334CrossRef
Zurück zum Zitat Guo K, Hassett DJ, Gu T (2012) Microbial fuel cells: electricity generation from organic wastes by microbes Guo K, Hassett DJ, Gu T (2012) Microbial fuel cells: electricity generation from organic wastes by microbes
Zurück zum Zitat Guo X, Zhan Y, Chen C et al (2016) Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel. Renew Energy 87:437–444CrossRef Guo X, Zhan Y, Chen C et al (2016) Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel. Renew Energy 87:437–444CrossRef
Zurück zum Zitat Harnisch F, Schroder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433–4448CrossRef Harnisch F, Schroder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433–4448CrossRef
Zurück zum Zitat Harris HW, El-naggar MY, Bretschger O et al (2009) Electrokinesis is a microbial behavior that requires extracellular electron transport. PNAS 107:326–331CrossRef Harris HW, El-naggar MY, Bretschger O et al (2009) Electrokinesis is a microbial behavior that requires extracellular electron transport. PNAS 107:326–331CrossRef
Zurück zum Zitat Hoel M, Kvemdokk S (1996) Depletion of fossil fuels and the impacts of global warming. Resour Energy Econ 18:115–136CrossRef Hoel M, Kvemdokk S (1996) Depletion of fossil fuels and the impacts of global warming. Resour Energy Econ 18:115–136CrossRef
Zurück zum Zitat Hoogers G (2014) Fuel cell technology handbook. CRC Press, Boca Raton Hoogers G (2014) Fuel cell technology handbook. CRC Press, Boca Raton
Zurück zum Zitat Hu W, Niu C, Wang Y et al (2010) Nitrogenous heterocyclic compounds degradation in the microbial fuel cells. Process Saf Environ Prot 89:133–140CrossRef Hu W, Niu C, Wang Y et al (2010) Nitrogenous heterocyclic compounds degradation in the microbial fuel cells. Process Saf Environ Prot 89:133–140CrossRef
Zurück zum Zitat Huang L, Regan JM, Quan X (2011) Bioresource technology electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102:316–323CrossRef Huang L, Regan JM, Quan X (2011) Bioresource technology electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102:316–323CrossRef
Zurück zum Zitat Ieropoulos IA, Greenman J, Melhuish C, Hart J (2005) Comparative study of three types of microbial fuel cell. Enzym Microb Technol 37:238–245CrossRef Ieropoulos IA, Greenman J, Melhuish C, Hart J (2005) Comparative study of three types of microbial fuel cell. Enzym Microb Technol 37:238–245CrossRef
Zurück zum Zitat Jafari H, Hossein A, Jonidi A et al (2013) Enzyme and microbial technology bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing. Enzym Microb Technol 52:352–357CrossRef Jafari H, Hossein A, Jonidi A et al (2013) Enzyme and microbial technology bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing. Enzym Microb Technol 52:352–357CrossRef
Zurück zum Zitat Khan MZ, Singh S, Sreekrishnan TR, Ahammad SZ (2014) Feasibility study on anaerobic biodegradation of azo dye reactive orange 16. RSC Adv 4:46851–46859CrossRef Khan MZ, Singh S, Sreekrishnan TR, Ahammad SZ (2014) Feasibility study on anaerobic biodegradation of azo dye reactive orange 16. RSC Adv 4:46851–46859CrossRef
Zurück zum Zitat Khan MD, Abdulateif H, Ismail IM et al (2015a) Bioelectricity generation and bioremediation of an Azo-Dye in a microbial fuel cell coupled activated sludge process. PLoS One 10:e0138448CrossRef Khan MD, Abdulateif H, Ismail IM et al (2015a) Bioelectricity generation and bioremediation of an Azo-Dye in a microbial fuel cell coupled activated sludge process. PLoS One 10:e0138448CrossRef
Zurück zum Zitat Khan MZ, Singh S, Sultana S et al (2015b) Studies on the biodegradation of two different azo dyes in bioelectrochemical systems. New J Chem 39:5597–5604CrossRef Khan MZ, Singh S, Sultana S et al (2015b) Studies on the biodegradation of two different azo dyes in bioelectrochemical systems. New J Chem 39:5597–5604CrossRef
Zurück zum Zitat Khan MD, Khan N, Sultana N et al (2017) Bioelectrochemical conversion of waste to energy using microbial fuel cell technology. Process Biochem 57:141–158CrossRef Khan MD, Khan N, Sultana N et al (2017) Bioelectrochemical conversion of waste to energy using microbial fuel cell technology. Process Biochem 57:141–158CrossRef
Zurück zum Zitat Lin CW, Wu CH, Chiu YH, Tsai SL (2014) Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell. Fuel 125:30–35CrossRef Lin CW, Wu CH, Chiu YH, Tsai SL (2014) Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell. Fuel 125:30–35CrossRef
Zurück zum Zitat Liu H, Grot S (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320CrossRef Liu H, Grot S (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320CrossRef
Zurück zum Zitat Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662CrossRef Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662CrossRef
Zurück zum Zitat Logan BE, Liu H (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046CrossRef Logan BE, Liu H (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046CrossRef
Zurück zum Zitat Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518CrossRef Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518CrossRef
Zurück zum Zitat Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRef Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRef
Zurück zum Zitat Logan BE, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346CrossRef Logan BE, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346CrossRef
Zurück zum Zitat Luo Y, Zhang F, Wei B et al (2011) Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. J Power Sources 196:9317–9321CrossRef Luo Y, Zhang F, Wei B et al (2011) Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. J Power Sources 196:9317–9321CrossRef
Zurück zum Zitat Matter PH, Zhang L, Ozkan US (2006) The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J Catal 239:83–96CrossRef Matter PH, Zhang L, Ozkan US (2006) The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J Catal 239:83–96CrossRef
Zurück zum Zitat Min B, Kim J, Oh S et al (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968CrossRef Min B, Kim J, Oh S et al (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968CrossRef
Zurück zum Zitat Mink JE, Rojas JP, Logan BE, Hussain MM (2012) Vertically grown multi-walled carbon nanotube anode and nickel silicide integrated high performance micro- sized ( 1.25 μL) microbial fuel cell (supporting information). Nano Lett 12:791–795CrossRef Mink JE, Rojas JP, Logan BE, Hussain MM (2012) Vertically grown multi-walled carbon nanotube anode and nickel silicide integrated high performance micro- sized ( 1.25 μL) microbial fuel cell (supporting information). Nano Lett 12:791–795CrossRef
Zurück zum Zitat Miran W, Nawaz M, Jang J, Lee DS (2016) International biodeterioration & biodegradation sustainable electricity generation by biodegradation of low-cost lemon peel biomass in a dual chamber microbial fuel cell. Int Biodeterior Biodegrad 106:75–79CrossRef Miran W, Nawaz M, Jang J, Lee DS (2016) International biodeterioration & biodegradation sustainable electricity generation by biodegradation of low-cost lemon peel biomass in a dual chamber microbial fuel cell. Int Biodeterior Biodegrad 106:75–79CrossRef
Zurück zum Zitat Najafabadi AT, Ng N, Gyenge E (2016) Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells. Biosens Bioelectron 81:103–110CrossRef Najafabadi AT, Ng N, Gyenge E (2016) Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells. Biosens Bioelectron 81:103–110CrossRef
Zurück zum Zitat Oon Y, Ong S, Ho L et al (2017) Bioresource technology role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresour Technol 224:265–275CrossRef Oon Y, Ong S, Ho L et al (2017) Bioresource technology role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresour Technol 224:265–275CrossRef
Zurück zum Zitat Pandey P, Shinde VN, Deopurkar RL et al (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723CrossRef Pandey P, Shinde VN, Deopurkar RL et al (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723CrossRef
Zurück zum Zitat Pandit S, Khilari S, Roy S, Pradhan D, Das D (2014) Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered microbial fuel cell: effect of different anodic operating conditions. Bioresour Technol 166:451–457CrossRef Pandit S, Khilari S, Roy S, Pradhan D, Das D (2014) Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered microbial fuel cell: effect of different anodic operating conditions. Bioresour Technol 166:451–457CrossRef
Zurück zum Zitat Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543CrossRef Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543CrossRef
Zurück zum Zitat Rabaey K, Boon N, Siciliano SD et al (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373CrossRef Rabaey K, Boon N, Siciliano SD et al (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373CrossRef
Zurück zum Zitat Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082CrossRef Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082CrossRef
Zurück zum Zitat Rabaey K, Sompel KVD, Maignien L, Boon N, Aelterman P, Clauwaert P et al (2006) Microbial fuel cells for sulfide. Environ Sci Technol 40:5218–5224CrossRef Rabaey K, Sompel KVD, Maignien L, Boon N, Aelterman P, Clauwaert P et al (2006) Microbial fuel cells for sulfide. Environ Sci Technol 40:5218–5224CrossRef
Zurück zum Zitat Rahimnejad M, Bakeri G, Najafpour G et al (2014) A review on the effect of proton exchange membranes in microbial fuel cells. Biofuel Res J 1:7–15CrossRef Rahimnejad M, Bakeri G, Najafpour G et al (2014) A review on the effect of proton exchange membranes in microbial fuel cells. Biofuel Res J 1:7–15CrossRef
Zurück zum Zitat Rahimnejad M, Adhami A, Darvari S et al (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alexandria Eng J 54:745–756CrossRef Rahimnejad M, Adhami A, Darvari S et al (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alexandria Eng J 54:745–756CrossRef
Zurück zum Zitat Rengasamy K, Berchmans S (2012) Bioresource technology simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus. Bioresour Technol 104:388–393CrossRef Rengasamy K, Berchmans S (2012) Bioresource technology simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus. Bioresour Technol 104:388–393CrossRef
Zurück zum Zitat Ringeisen BR, Henderson E, Wu PK et al (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634CrossRef Ringeisen BR, Henderson E, Wu PK et al (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634CrossRef
Zurück zum Zitat Rozendal RA, Hamelers HVM, GJW E et al (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640CrossRef Rozendal RA, Hamelers HVM, GJW E et al (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640CrossRef
Zurück zum Zitat Rozendal RA, Hamelers HVM, Rabaey K et al (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459CrossRef Rozendal RA, Hamelers HVM, Rabaey K et al (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459CrossRef
Zurück zum Zitat Samsudeen N, Radhakrishnan TK, Matheswaran M (2015) Bioresource Technology Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater. Bioresour Technol 195:242–247CrossRef Samsudeen N, Radhakrishnan TK, Matheswaran M (2015) Bioresource Technology Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater. Bioresour Technol 195:242–247CrossRef
Zurück zum Zitat Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629CrossRef Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629CrossRef
Zurück zum Zitat Society R (2016) Electrical effects accompanying the decomposition of organic compounds. II. Ionisation of the gases produced during fermentation. Author (s): Potter MC, Source: Proceedings of the Royal Society of London. Series A, Containing Papers of a Publish. 91:465–480 Society R (2016) Electrical effects accompanying the decomposition of organic compounds. II. Ionisation of the gases produced during fermentation. Author (s): Potter MC, Source: Proceedings of the Royal Society of London. Series A, Containing Papers of a Publish. 91:465–480
Zurück zum Zitat Sonawane JM, Marsili E (2014) Science direct treatment of domestic and distillery wastewater in high surface microbial fuel cells. Int J Hydrog Energy 39:21819–21827CrossRef Sonawane JM, Marsili E (2014) Science direct treatment of domestic and distillery wastewater in high surface microbial fuel cells. Int J Hydrog Energy 39:21819–21827CrossRef
Zurück zum Zitat Song H, Zhu Y, Li J (2015) Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells–a mini review. Arab J Chem:1–8 Song H, Zhu Y, Li J (2015) Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells–a mini review. Arab J Chem:1–8
Zurück zum Zitat Song R-B, Zhao C-E, Jiang L-P et al (2016) Bacteria-affinity 3D macroporous graphene/MWCNTs/Fe3 O4 foams for high-performance microbial fuel cells. ACS Appl Mater Interfaces 8:16170–16177 Song R-B, Zhao C-E, Jiang L-P et al (2016) Bacteria-affinity 3D macroporous graphene/MWCNTs/Fe3 O4 foams for high-performance microbial fuel cells. ACS Appl Mater Interfaces 8:16170–16177
Zurück zum Zitat Su DS, Zhang J, Frank B et al (2010) Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 169–180 Su DS, Zhang J, Frank B et al (2010) Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 169–180
Zurück zum Zitat Sultana S, Khan MD, Sabir S et al (2015) Bio-electro degradation of azo-dye in a combined anaerobic–aerobic process along with energy recovery. New J Chem 39:9461–9470CrossRef Sultana S, Khan MD, Sabir S et al (2015) Bio-electro degradation of azo-dye in a combined anaerobic–aerobic process along with energy recovery. New J Chem 39:9461–9470CrossRef
Zurück zum Zitat Tables A (2013) World population prospects. The 2012 revision Tables A (2013) World population prospects. The 2012 revision
Zurück zum Zitat Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165CrossRef Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165CrossRef
Zurück zum Zitat Worrell JH (1997) Inorganic chemistry an industrial and environmental perspective. J Chem Educ 74(12):1399CrossRef Worrell JH (1997) Inorganic chemistry an industrial and environmental perspective. J Chem Educ 74(12):1399CrossRef
Zurück zum Zitat Wu TSX, Zhou CC (2014) Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioprocess Biosyst Eng 37:133–138CrossRef Wu TSX, Zhou CC (2014) Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioprocess Biosyst Eng 37:133–138CrossRef
Zurück zum Zitat Yang Q, Wang X, Feng Y et al (2012) Electricity generation using eight amino acids by air – cathode microbial fuel cells. Fuel 102:478–482CrossRef Yang Q, Wang X, Feng Y et al (2012) Electricity generation using eight amino acids by air – cathode microbial fuel cells. Fuel 102:478–482CrossRef
Zurück zum Zitat Yi H, Nevin KP, Kim B et al (2009) Biosensors and bioelectronics selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503CrossRef Yi H, Nevin KP, Kim B et al (2009) Biosensors and bioelectronics selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503CrossRef
Zurück zum Zitat Zhang X, Xia X, Ivanov I et al (2014) Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black. Environ Sci Technol 48:2075–2081CrossRef Zhang X, Xia X, Ivanov I et al (2014) Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black. Environ Sci Technol 48:2075–2081CrossRef
Zurück zum Zitat Zhu G, Chen G, Yu R, Li H, Wang C (2016) Enhanced simultaneous nitrification/denitrification in the biocathode of a microbial fuel cell fed with cyanobacteria solution. Process Biochem 51:80–88CrossRef Zhu G, Chen G, Yu R, Li H, Wang C (2016) Enhanced simultaneous nitrification/denitrification in the biocathode of a microbial fuel cell fed with cyanobacteria solution. Process Biochem 51:80–88CrossRef
Metadaten
Titel
Microbial Fuel Cell: Waste Minimization and Energy Generation
verfasst von
Mohammad Danish Khan
Nishat Khan
Saima Sultana
Mohammad Zain Khan
Suhail Sabir
Ameer Azam
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-64501-8_8