Skip to main content

Arbuscular Mycorrhizal Fungi: Green Approach/Technology for Sustainable Agriculture and Environment

  • Chapter
  • First Online:
Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration

Abstract

To feed the growing population, global food production needs to be doubled by 2050. The fertilizers cost have increased several folds in the last few years, which necessitates agrarian community to be less reliable on chemicals to grow and protect their crops. Moreover, dependency on chemical fertilizers and pesticides has led to the deterioration of human health, disruption of ecosystem functioning and degradation of our environment. To overcome these problems, there is a need to explore and exploit the beneficial plant–soil microbe interactions to meet the food demand without affecting the relationship between the man and his environment. Arbuscular mycorrhizal fungi (AMF) are known to form symbiotic association with the roots of more than 90% of the terrestrial plants. They serve as biofertilizer and enhance the plant growth by accelerating nutrient uptake, particularly of inaccessible nutrients like phosphorus and nitrogen from the soil. Beside mineral nutrition, AMF also maintain the root hydraulic conductivity, increase the plant net photosynthetic capacity, improve stomatal conductance. The multifunctional extraradical hyphae of the fungus provide numerous ecological advantages like maintaining the soil health by influencing the beneficial microbes, aggregating soil particle and preventing soil erosion, conferring resistance to various stresses, enhance ecosystem productivity, bioremediation of degraded land, serving as soil carbon sink. In this chapter we attempt to discuss different role played by AMF, which make them potential tool for sustainable agriculture and environment. It is tempting to state that AMF served for 3E’s i.e. eco-friendly, economic and enhanced yield.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abd-Alla MH, El Enany AWE, Nafady NA, Khalof DM, Morsy FM (2014) Symbiotic interaction of Rhizobium leguminosarum bv viciae and Arbuscular mycorrhizal fungi as plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soils. Microbiol Res 169:49–58

    CAS  PubMed  Google Scholar 

  • Abdel Latef AA, Hashem A, Rasool A, Abd_Allah EF, Alqarawi AA, Dilfuza E, Sumira Jan, Naser AA, Parvaiz A (2016) Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J Plant Physiol 59:407–426

    Google Scholar 

  • Adeyemi OR, Atayese MO, Dare MO, Sakariyawo SO, Adigbo SO, Bakare TO (2015) Weed control efficacy and arbuscular mycorrhizal (AM) colonization of upland rice varieties as affected by population densities. J Biol Agric Healthcare 5:178–185

    Google Scholar 

  • Aggarwal A, Kadian N, Tanwar A, Yadav A, Gupta KK (2011) Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. J Appl Nat Sci 3:340–351

    Google Scholar 

  • Alguacil MM, Lumini E, Roldan A, Salinas-García JR, Bonfante P, Bianciotto V (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527–536

    CAS  PubMed  Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:41–47

    Google Scholar 

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen MF, Moore TS, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular–arbuscular mycorrhizae. II. Altered levels of gibberellin-like substances and abscisic acid in the host plant. Can J Bot 60:468–471

    CAS  Google Scholar 

  • Ames RN, Reid CPP, Ingham ER (1984) Rhizosphere bacterial population responses to root colonization by a vesicular arbuscular mycorrhizal fungus. New Phytol 96:555–563

    Google Scholar 

  • Amora-Lazcano E, Vazquez MM, Azcon R (1998) Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biol Fertil Soils 27:65–70

    CAS  Google Scholar 

  • Ampong-Nyarko K, Datta SK (1991) A handbook for weed control in rice. International Rice Research Institute, Manila, Philippines, p 113. ISBN-13:9789712200205

    Google Scholar 

  • Antoninka AJ, Ritchie ME, Johnson NC (2015) The hidden Serengeti-Mycorrhizal fungi respond to environmental gradients. Pedobiologia (Jena) 58:165–176

    Google Scholar 

  • Asmelash F, Bekele T, Birhane E (2016) The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol 7:1095. https://doi.org/10.3389/fmicb.2016.01095

    Article  PubMed  PubMed Central  Google Scholar 

  • Atul-Nayyar A, Hamel C, Hanson K, Germida J (2009) The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19:239–246

    CAS  PubMed  Google Scholar 

  • Aubrecht L, Staněk Z, Koller J (2006) Electrical measurement of the absorption surfaces of tree roots by the earth impedance methods: 1. Theory. Tree Physiol 26:1105–1112

    PubMed  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Augé RM (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Google Scholar 

  • Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24

    PubMed  Google Scholar 

  • Azul AM, Nunes J, Ferreira I, Coelho AS, Veríssimo P, Trovão J, Campos A, Castro P, Freitas H (2014) Valuing native ectomycorrhizal fungi as a Mediterranean forestry component for sustainable and innovative solutions 1. Botany 92:161–171

    CAS  Google Scholar 

  • Bagheri S, Ebrahimi MA, Davazdahemami S, Moghadam JM (2014) Terpenoids and phenolic compounds production of mint genotypes in response to mycorrhizal bioelicitors. TJEAS J 4:339–348

    Google Scholar 

  • Bagyaraj DJ, Sharma MP, Maiti D (2015) Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 108:1288–1293

    CAS  Google Scholar 

  • Balestrini R, Bonfante P (2014) Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Front Plant Sci 5:237. https://doi.org/10.3389/fpls.2014.00237

    Article  PubMed  PubMed Central  Google Scholar 

  • Balestrini R, Goìmez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plants and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062

    CAS  PubMed  Google Scholar 

  • Barea JM (1991) Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. Adv Soil Sci 15:1–40

    Google Scholar 

  • Barea JM, Gryndler M, Lemananceau P, Schuepp H, Azcon R (2002) The rhizosphere of mycorrhizal plants. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhauser, Basel

    Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2013) Enhanced accumulation of vitamins, nutraceuticals and minerals in lettuces associated with arbuscular mycorrhizal fungi (AMF): a question of interest for both vegetables and humans. Agriculture 3:188–209

    CAS  Google Scholar 

  • Bender SF, Plantenga F, Neftel A, Jocher M, Oberholzer H-R, Koehl L, Giles M, Daniell TJ, van der Heijden MGA (2014) Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. ISME J 8:1336–1345

    CAS  PubMed  Google Scholar 

  • Bender SF, Wagg C, van der Heijden MGA (2016) An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol Evol 31:440–452

    PubMed  Google Scholar 

  • Bhardwaj D, Ansari M, Sahoo R, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. https://doi.org/10.1186/1475-2859-13-66

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhat PR, Kaveriappa KM (2007) Effect of AM fungi on the growth and nutrition uptake in some endemic Myristicaceae members of the Western ghats, India. In: Tiwari M, Sati SC (eds) The mycorrhizae: diversity, ecology and application. Daya Pub. House, Delhi, pp 295–309

    Google Scholar 

  • Biermann B, Linderman RG (1983) Increased geranium growth using pre-transplant inoculation with a mycorrhizal fungus. J Am Soc Hortic Sci 108:972–976

    Google Scholar 

  • Birhane E, Sterck FJ, Fetene M, Bongers F, Kuyper TW (2012) Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia 169:895–904

    PubMed  PubMed Central  Google Scholar 

  • Borriello R, Berruti A, Lumini E, Beffa MTD, Scariot V, Bianciotto V (2015) Edaphic factors trigger diverse AM fungal communities associated to exotic camellias in closely located Lake Maggiore (Italy) sites. Mycorrhiza 25:253–265

    PubMed  Google Scholar 

  • Bowles TM, Jackson LE, Loeher M, Cavagnaro TR (2016) Ecological intensification and arbuscular mycorrhizas: a meta-analysis of tillage and cover crop effects. J Appl Ecol. https://doi.org/10.1111/1365-2664.12815

    Google Scholar 

  • Brito I, Carvalho M, Goss MJ (2011) The importance of no-till in the development of cropping systems to maximize benefits of arbuscular mycorrhiza symbiosis. In: Elizabeth Stockdale E, Watson C (eds) Proceedings of the Association of applied biologist “Making crop rotations fit for the future”. Aspects of applied biology, pp 137–141

    Google Scholar 

  • Brito I, Carvalho M, Goss MJ (2013) Soil and weed management for enhancing arbuscular mycorrhiza colonization of wheat. Soil Use Manag 29:540–546

    Google Scholar 

  • Brodt S, Six J, Feenstra G, Ingels C, Campbell D (2011) Sustainable agriculture. Nat Edu Know 3:1

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    PubMed  Google Scholar 

  • Brundrett MC (2008) Mycorrhizal associations: the web resource. Date accessed

    Google Scholar 

  • Brundrett MC, Piche Y, Peterson RL (1985) A developmental study of the early stages in vesicular arbuscular mycorrhiza formation. Can J Bot 63:184–194

    Google Scholar 

  • Cabral L, Siqueira J, Soares C et al (2010) Retention of heavy metals by arbuscular mycorrhizal fungi mycelium. Quím Nova 33:25–29

    CAS  Google Scholar 

  • Cabral L, Soares CR, Giachini AJ, Siqueira JO (2015) Arbuscular mycorrhizal fungi in phytoremediation of contaminated areas by trace elements: mechanisms and major benefits of their applications. World J Microbiol Biotechnol 31:1655–1664

    CAS  PubMed  Google Scholar 

  • Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P (2008) Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol 147:429–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casazza G, Lumini E, Ercole E, Dovana F, Guerrina M, Arnulfo A, Minuto L, Fusconi A, Mucciarelli M (2017) The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis. PLoS One 12(2):e0171866. https://doi.org/10.1371/journal.pone.0171866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castellanos-Morales V, Villegas J, Wendelin S, Vierheilig H, Eder R, Cardenas-Navarro R (2010) Root colonization by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria x ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90:1774–1782

    CAS  PubMed  Google Scholar 

  • Chakraborty K, Bose J, Shabala L, Shabala S (2016) Difference in root K+ retention ability and reduced sensitivity of K+ permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. J Exp Bot 67:4611–4625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SC, Jin WJ, Liu AR, Zhang SJ, Liu DL, He CX (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic (Amst) 160:222–229

    CAS  Google Scholar 

  • Chen M, Yang G, Sheng Y, Li P, Qui H, Zhou X, Huang L, Chao Z (2017) Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of Liquorice under nutrient stress. Front Plant Sci 8:931. https://doi.org/10.3389/fpls.2017.00931

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Booker FL, Tu C, Burkey KO, Zhou L, Shew HD, Ruffy TW, Hu S (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087

    CAS  PubMed  Google Scholar 

  • Cliquet JB, Murray PJ, Boucaud J (1997) Effect of the arbuscular mycorrhizal fungus Glomus fasciculatum on the uptake of amino nitrogen by Lolium perenne. New Phytol 137:345–349

    CAS  PubMed  Google Scholar 

  • Cseresnyés I, Takács T, Végh RK, Anton A, Rajkai K (2013) Electrical impedance and capacitance method: a new approach for detection of functional aspects of arbuscular mycorrhizal colonization in maize. Eur J Soil Biol 54:25–31

    Google Scholar 

  • Cseresnyés I, Takács T, Füzy A, Rajkai K (2014) Simultaneous monitoring of electrical capacitance and water uptake activity of plant root system. Int Agrophys 28:537–541

    Google Scholar 

  • Daei G, Ardakani M, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 166:617–625

    CAS  PubMed  Google Scholar 

  • Declerck S, Strullu D, Fortin J (2005) In vitro culture of mycorrhizas. Springer, New York

    Google Scholar 

  • Del Val C, Barea JM, Azcón-Aguilar C (1999) Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge-contaminated soils. Appl Soil Ecol 11:261–269

    Google Scholar 

  • Dhillion SS, Gardsjord TL (2004) Arbuscular mycorrhizas influence plant diversity, productivity, and nutrients in boreal grasslands. Can J Bot 82:104–114

    Google Scholar 

  • Diaz-Zorita M, Perfect E, Grove JH (2002) Disruptive methods for assessing soil structure. Soil Tillage Res 64:3–22

    Google Scholar 

  • Douds DD Jr, Galvez L, Janke RR, Wagoner P (1995) Effect of tillage and farming system upon populations and distribution of vesicular-arbuscular mycorrhizal fungi. Agric Ecosyst Environ 52:111–118

    Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci USA 107:10939–10942

    Google Scholar 

  • Ekblad A, Wallander H, Godbold DL, Cruz C, Johnson D, Baldrian P, Björk RG, Epron D, Kieliszewska-Rokicka B, Kjøller R et al (2013) The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant Soil 366:1–27

    CAS  Google Scholar 

  • Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24(1):170–179

    CAS  PubMed  Google Scholar 

  • Engel R, Szabó K, Abrankó L, Rendes K, Füzy A, Takács T (2016) Effect of arbuscular mycorrhizal fungi on the growth and polyphenol profile of marjoram, lemon balm, and marigold. J Agric Food Chem 64:3733–3742

    CAS  PubMed  Google Scholar 

  • Enkhtuya B, Oskarsson U, Dodd JC, Vosatka M (2003) Inoculation of grass and tree seedlings used for reclaiming eroded areas in Iceland with mycorrhizal fungi. Folia Geobot 38:209–222

    Google Scholar 

  • Estaun V, Vicente S, Calvet C, Camprubi A, Busquets M (2007) Integration of arbuscularmycorrhiza inoculation in hydroseeding technology. Effects on plant growth and interspecies competition. Land Degrad Dev 18:621–630

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum–graecum. Mycorrhiza 23:71–86

    CAS  PubMed  Google Scholar 

  • Fan Q, Liu J (2011) Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiol Plant 33:1533–1542

    Google Scholar 

  • Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, Van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609

    Google Scholar 

  • Fellbaum CR, Mensah J, Cloos A, Pfeffer P, Strahan G, Kiers ET, Bücking H (2014) Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol 2:646–656

    Google Scholar 

  • Fitzgerald JW (1976) Sulfate ester formation and hydrolysis: potentially important yet often ignored aspect of sulfur cycle of aerobic soils. Bacteriol Rev 40:698–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB et al (eds) Climate change: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • França AC, de Freitas AF, dos Santos EA, Grazziotti PH, de Andrade Júnior VC (2016) Mycorrhizal fungi increase coffee plants competitiveness against Bidens pilosa interference. Pesqui Agropecu Trop Goiânia 46:132–139

    Google Scholar 

  • Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418

    Google Scholar 

  • Garg N, Singla P (2012) The role of Glomus mosseae on key physiological and biochemical parameters of pea plants grown in arsenic contaminated soil. Sci Hortic 143:92–101

    CAS  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gehring C, Bennett A (2009) Mycorrhizal fungal-plant-insect interactions: the importance of community approach. Environ Entomol 38:93–102

    PubMed  Google Scholar 

  • Gerz M, Bueno CG, Zobel M, Moora M (2016) Plant community mycorrhization in temperate forests and grasslands: relations with edaphic properties and plant diversity. J Veg Sci 27:89–99

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    PubMed  Google Scholar 

  • Gil-Cardeza ML, Ferri A, Cornejo P et al (2014) Distribution of chromium species in a Cr-polluted soil: presence of Cr (III) in glomalin related protein fraction. Sci Total Environ 493:828–833

    CAS  PubMed  Google Scholar 

  • Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agriculture soils: a review. Soil Biol Biochem 30:1389–1414

    CAS  Google Scholar 

  • Giovannetti M, Tolosano M, Volpe V, Kopriva S, Bonfante P (2014) Identification and functional characterization of a sulfate transporter induced by both sulfur starvation and mycorrhiza formation in Lotus japonicus. New Phytol 204:609–619

    CAS  PubMed  Google Scholar 

  • Giri B, Saxena B (2017) Response of arbuscular mycorrhizal fungi to global climate change and their role in terrestrial ecosystem C and N cycling. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza-functions, diversity and state of the art. Springer, Cham, pp 305–327

    Google Scholar 

  • Gohre V, Paskowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    PubMed  Google Scholar 

  • Gomes SIF, Merckx VSFT, Saavedra S (2017) Fungal-host diversity among mycoheterotrophic plants increases proportionally to their fungal-host overlap. Ecol Evol 10:3623–3630

    Google Scholar 

  • Gonzalez-Guerrero M, Azcon-Aguilar C, Mooney M (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    CAS  PubMed  Google Scholar 

  • Graham JH (2000) Assessing cost of arbuscular mycorrhizal symbiosis in agrosystems. In: Podila GK, Donds DD (eds) Current advances in mycorrhizae research. APS Press, St Paul, pp 127–140

    Google Scholar 

  • Guo T, Zhang JL, Christie P, Li XL (2007) Pungency of spring onion as affected by inoculation with arbuscular mycorrhizal fungi and sulfur supply. J Plant Nutr 30:1023–1034

    CAS  Google Scholar 

  • Gurung J, Bajracharya RM (2012) Climate change and glacial retreat in the Himalaya: implications for soil and plant development. Kathm Univ J Sci Engin Tech 8:153–163

    Google Scholar 

  • Haeberli W, Beninston M (1998) Climate change and its impacts on glaciers and permafrost in the Alps. AMBIO J Hum Environ 27:258–265

    Google Scholar 

  • Hampp R, Nehls U, Wallenda T (2000) Physiology of mycorrhiza. In: Esser K, Kadereit JW, Lüttge U, Runge M (eds) Progress in botany. Genetics, physiology, systemates, ecology. Springer, Berlin, pp 223–254

    Google Scholar 

  • Harrison MJ, Dewbre GR, Liu JY (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartnett DC, Wilson WT (1999) Mycorrhizae influence plant community structure and diversity in tall grass prairie. Ecology 80:1187–1195

    Google Scholar 

  • Hassan SE, Boon E, St-Arnaud M, Hijri M (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol 20:3469–3483

    Google Scholar 

  • Hazzoumi Z, Moustakime Y, Elharchli EH, Khalid AJ (2015) Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chem Biol Technol Agric 2:10. https://doi.org/10.1186/s40538-015-0035-3

    Article  CAS  Google Scholar 

  • Heap I (2015) The international survey of herbicide resistant weeds. Retrieved from www.weedscience.org

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    CAS  PubMed  Google Scholar 

  • Heneghan L, Miller SP, Baer S, Callaham MA, Montgomery J, Pavao-Zuckerman M (2008) Integrating soil ecological knowledge into restoration management. Restor Ecol 16:608–617

    Google Scholar 

  • Herman DJ, Firestone MK, Nuccio E, Hodge A (2012) Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiol Ecol 80:236–247

    CAS  PubMed  Google Scholar 

  • Hijri M (2016) Analysis of a large dataset form field mycorrhizal inoculation trials on potato showed highly significant increase in yield. Mycorrhiza 26:209–214

    PubMed  Google Scholar 

  • Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA 107:13754–13759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodge A, Storer K (2015) Arbuscular mycorrhiza and nitrogen: Implications for individual plants through to ecosystems. Plant Soil 386:1–19

    CAS  Google Scholar 

  • Hohmann P, Messmer MM (2017) Breeding for mycorrhizal symbiosis: focus on disease resistance. Euphytica 213:113

    Google Scholar 

  • Horn S, Hempel S, Verbruggen E, Rillig MC, Caruso T (2017) Linking the community structure of arbuscular mycorrhizal fungi and plants: a story of interdependence? ISME J 11:1400–1411

    PubMed  PubMed Central  Google Scholar 

  • Huang Z, Krishnamurthy S, Panda A, Samal SK (2003) Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J Virol 77:8676–8685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter P (2016a) Plant microbiomes and sustainable agriculture. EMBO Rep 17:1696–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter P (2016b) Deciphering the plant microbiome and its role in nutrient supply and plant immunity has great potential to reduce the use of fertilizers and biocides in agriculture. Sci Soc 17:1696–1699

    CAS  Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Google Scholar 

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12:225–234

    CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276:163–176

    CAS  Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30:905–916

    CAS  Google Scholar 

  • Jeffries P, Barea JM (2012) Arbuscularmycorrhiza – a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The mycota, Fungal associations, vol IX, 2nd edn. Springer, Berlin, Heidelberg, pp 51–75

    Google Scholar 

  • Jha DK, Sharma GD, Mishra RR (1994) Ecology of vesicular-arbuscular mycorrhiza. In: Prasad AB, Bilgrami RS (eds) Microbes and environments. Narendra Publishing House, Delhi, pp 199–208

    Google Scholar 

  • Jiang C, Zhang L (2015) Climate change and its impact on the eco-environment of the three-rivers headwater region on the Tibetan Plateau, China. Int J Environ Res Public Health 12:12057–12081

    PubMed  PubMed Central  Google Scholar 

  • Johansson RC, Gowda PH, Mulla DJ, Dalzell BJ (2004) Metamodelling phosphorus best management practices for policy use: a frontier approach. Agric Econ 30:63–74

    Google Scholar 

  • Johnson NC, Wilson GWT, Bowker MA, Wilson JA, Miller RA (2010) Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc Natl Acad Sci USA 107:2093–2098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Joner EJ, Johansen A (2000) Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi. Mycol Res 104:81–86

    CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    CAS  Google Scholar 

  • Jordan NR, Zhang J, Huerd S (2000) Arbuscular-mycorrhizal fungi: potential roles in weed management. Weed Res 40:397–410

    Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in dill (Anethum graveolens L.) and carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463

    CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:3007–3011

    Google Scholar 

  • Karagiannidis N, Hadjisavva-Zinoviadi S (1998) The mycorrhizal fungus Glomus mosseae enhances growth, yield and chemical composition of a durum wheat variety in 10 different soils. Nutr Cycl Agroecosyst 52:1–7

    Google Scholar 

  • Karthikeyan A, Krishnakumar N (2012) Reforestation of bauxite mine spoils with Eucalyptus tereticornis Sm. seedlings inoculated with arbuscular mycorrhizal fungi. Ann For Res 55:207–216

    Google Scholar 

  • Kaur R, Singh A, Kang JS (2014) Influence of different types mycorrhizal fungi on crop productivity. Curr Agric Res 2:51–54

    Google Scholar 

  • Kaye JW, Pfleger FL, Stewart EL (1984) Interaction of Glomus fasciculatum and-Pythium ultimum on greenhouse-grown poinsettia. Can J Bot 62:1575–1579

    Google Scholar 

  • Khalid M, Hassani D, Bilal M, Liao J, Huang D (2017) Elevation of secondary metabolites synthesis in Brassica campestris ssp. chinensis L. via exogenous inoculation of Piriformospora indica with appropriate fertilizer. PLoS One 12(5):e0177185

    PubMed  PubMed Central  Google Scholar 

  • Khan AG (2006) Mycorrhiza remediation-an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7:503–514

    PubMed  PubMed Central  Google Scholar 

  • Kikvidze Z, Armas C, Fukuda K, Martínez-García LB, Miyata M, Oda-Tanaka A (2010) The role of arbuscular mycorrhizae in primary succession: differences and similarities across habitats. Web Ecol 10:50–57

    Google Scholar 

  • Klabi R, Bell TH, Hamel C, Iwaasa A, Schellenberg M, Raies A, St-Arnaud M (2015) Plant assemblage composition and soil P concentration differentially affect communities of AM and total fungi in a semi-arid grassland. FEMS Microbiol Ecol 91:1–13

    PubMed  Google Scholar 

  • Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137–141

    Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:1411–1415

    CAS  PubMed  Google Scholar 

  • Koca H, Bor M, Özdemir F, Türkan İ (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    CAS  Google Scholar 

  • Kohler T, Maselli D (2009) Mountains and climate change – from understanding to action. Published by Geographica Bernensia with the support of the Swiss Agency for Development and Cooperation (SDC), and an International Team of Contributors, Bern

    Google Scholar 

  • Kytoviita MM (2005) Role of nutrient level and defoliation on symbiotic function: experimental evidence by tracing C-14/N-15 exchange in mycorrhizal birch seedlings. Mycorrhiza 15:65–70

    PubMed  Google Scholar 

  • Lambers H, Martinoia E, Renton M (2015) Plant adaptations to severely phosphorus-impoverished soils. Curr Opin Plant Biol 25:23–31

    CAS  PubMed  Google Scholar 

  • Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lazcano C, Barrios-Masias FH, Jackson LE (2014) Arbuscular mycorrhizal effects on plant water relations and soil greenhouse gas emissions under changing moisture regimes. Soil Biol Biochem 74:184–192

    CAS  Google Scholar 

  • Leifheit EF, Veresoglou SD, Lehmann A, Morris EK, Rillig MC (2014) Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation – a meta-analysis. Plant Soil 374:523–537

    CAS  Google Scholar 

  • Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol 168:189–204

    CAS  PubMed  Google Scholar 

  • Lendzemo VW (2004) The tripartite interaction between sorghum, Striga hermonthica, and arbuscular mycorrhizal fungi. PhD thesis, Wageningen University, Wageningen, The Netherlands

    Google Scholar 

  • Lenoir I, Fontaine J, Lounès-Hadj A (2016) Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123:4–15

    CAS  PubMed  Google Scholar 

  • Leustek T (1996) Molecular genetics of sulfate assimilation in plants. Physiol Plant 97:411–419

    CAS  Google Scholar 

  • Leyval C, Joner EJ, del Val C, Haselwandter K (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 175–186

    Google Scholar 

  • Li HY, Smith SE, Holloway RE, Zhu YG, Smith FA (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543

    CAS  PubMed  Google Scholar 

  • Lin G, McCormack ML, Guo D (2015) Arbuscular mycorrhizal fungal effects on plant competition and community structure. J Ecol 103:1224–1232

    CAS  Google Scholar 

  • Liu C, Muchhal US, Raghothama KG (1997) Differential expression of TPSI1, a phosphate starvation-inducible gene in tomato. Plant Mol Biol 33:867–874

    CAS  PubMed  Google Scholar 

  • Liu JN, Wu LJ, Wei SG, Xiao X, Su CX, Jiang P, Song ZB, Wang T, Yu ZL (2007) Effects of arbuscular mycorrhizal fungi on the growth, nutrient uptake and glycyrrhizin production of licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 52:29–39

    CAS  Google Scholar 

  • Lu F, Lee C, Wang C (2015) The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content. Peer J 3:e1266

    PubMed  PubMed Central  Google Scholar 

  • Malekzadeh E, Alikhani AH, Savaghebi-Fioozabadi RG, Zarei M (2011) Influence of arbuscular mycorrhizal fungi and an improving growth bacterium on Cd uptake and maize growth in Cd-polluted soils. Spanish J Agric Res 9:1213–1223

    Google Scholar 

  • Manaut N, Sanguin H, Ouahmane L, Bressan M, Thioulouse J, Baudoin E (2015) Potentialities of ecological engineering strategy based on native arbuscular mycorrhizal community for improving afforestation programs with carob trees in degraded environments. Ecol Eng 79:113–119

    Google Scholar 

  • Mandal S, Evelin H, Giri B, Singh VP, Kapoor R (2013) Arbuscular mycorrhiza enhances the production of stevioside and rebaudioside-A in Stevia rebaudiana via nutritional and non-nutritional mechanisms. Appl Soil Ecol 72:187–194

    Google Scholar 

  • Mandal S, Upadhyay S, Wajid S, Ram M, Jain DC, Singh VP, Kapoor R (2015) Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels. Mycorrhiza 25:345–357

    CAS  PubMed  Google Scholar 

  • Manimozhi K, Gayathri D (2012) Eco friendly approaches for sustainable agriculture. J Environ Res Dev 7:166–173

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Matam P, Parvatam G (2017) Arbuscular mycorrhizal fungi promote enhanced growth, tuberous roots yield and root specific flavor 2-hydroxy-4-methoxy benzaldehyde content of Decalepis hamiltonii Wight and Arn. Acta Sci Pol Hortorum Cultus 16:3–10

    Google Scholar 

  • Mayor J, Bahram M, Henkel T, Buegger F, Pritsch K, Tedersoo L (2015) Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns, latitudinal variation and hidden mechanisms. Ecol Lett 18:96–107

    PubMed  Google Scholar 

  • McFarland J, Ruess R, Keilland K, Pregitzer K, Hendrick R, Allen M (2010) Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4+. Ecosystems 13:177–193

    CAS  Google Scholar 

  • Meier S, Cornejo P, Cartes P, Borie F, Medina J, Azcón R (2015) Interactive effect between Cu-adapted arbuscular mycorrhizal fungi and biotreated agrowaste residue to improve the nutritional status of Oenothera picensis growing in Cu-polluted soils. J Plant Nutr Soil Sci 178:126–135

    CAS  Google Scholar 

  • Miller RM, Jastrow JD (1990) Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Biol Biochem 22:579–584

    Google Scholar 

  • Miransari M, Bahrami HA, Rejali F, Malakouti MJ (2008) Using arbuscular mycorrhiza to alleviate the stress of soil compaction on wheat (Triticum aestivum L.) growth. Soil Biol Biochem 40:1197–1206

    CAS  Google Scholar 

  • Mohamed AA, Wedad EEE, Heggo AM, Hassan EA (2014) Effect of dual inoculation with arbuscular mycorrhizal fungi and sulphur-oxidising bacteria on onion (Allium cepa L.) and maize (Zea mays L.) grown in sandy soil under greenhouse conditions. Ann Agric Sci 59:109–118

    Google Scholar 

  • Monreal CM, DeRosa M, Mallubhotla SC, Bindraban PS, Dimkpa C (2015) The application of nanotechnology for micronutrients in soil-plant systems. VFRC report 2015/3. Virtual Fertilizer Research Center, Washington, DC, p 44

    Google Scholar 

  • Montzka SA, Dlugokencky EJ, Butler JH (2011) Non-CO2 greenhouse gases and climate change. Nature 476:43–50

    CAS  PubMed  Google Scholar 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617

    CAS  PubMed  Google Scholar 

  • Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045–1050

    Google Scholar 

  • Mwangi MW, Monda EO, Okoth SA, Jefwa JM (2011) Inoculation of tomato seedlings with Trichoderma Harzianum and arbuscular mycorrhizal fungi and their effect on growth and control of wilt in tomato seedlings. Braz J Microbiol 42:508–513

    PubMed  PubMed Central  Google Scholar 

  • Nadeem SM, Ahmad M, Zahir ZA (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environment. Biotechnol Adv 32:429–448

    PubMed  Google Scholar 

  • Nakano A, Takahashi K, Koide RT, Kimura M (2001) Determination of the nitrogen source for arbuscular mycorrhizal fungi by 15N application to soil and plants. Mycorrhiza 10:267–273

    CAS  Google Scholar 

  • Nicolson TH (1967) Vesicular-arbuscular mycorrhiza-a universal plant symbiosis. Sci Prog Oxf 55:561–581

    Google Scholar 

  • Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One 9:e90841

    PubMed  PubMed Central  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Google Scholar 

  • Pellegrino E, Bedini S (2014) Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem 68:429–439

    CAS  Google Scholar 

  • Pérez-Tienda J, Valderas A, Camañes G, García-Agustín P, Ferrol N (2012) Kinetics of NH4+ uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza 22:485–491

    PubMed  Google Scholar 

  • Perumal JV, Maun MA (1999) The role of mycorrhizal fungi in growth enhancement of dune plants following burial in sand. Funct Ecol 13:560–566

    Google Scholar 

  • Pistelli LA, Ulivieri V, D’Angiolillo F, Giovannelli S, Pistelli LU, Giovannetti M (2015) Influence of arbuscular mycorrhizal fungi (AMF) in the production of secondary metabolites of Bituminaria bituminosa L. In: Proceedings of the joint congress SIBV-SIGA, Milano, Italy

    Google Scholar 

  • Porcel R, Ruiz-Lozano JM (2004) Arbuscular mycorrhizal influence on leaf water potential, solute accumulation and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55:1743–1750

    CAS  PubMed  Google Scholar 

  • Porcel R, Gómez M, Kaldenhoff R, Ruiz-Lozano JM (2005) Impairment of NtAQP1 gene expression in tobacco plants does not affect root colonization pattern by arbuscular mycorrhizal fungi but decreases their symbiotic efficiency under drought. Mycorrhiza 15:417–423

    CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    CAS  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant Growth-Promoting Rhizobacteria (PGPR) and Medicinal Plants. Springer, Cham, pp 247–260

    Google Scholar 

  • Prieto I, Armas C, Pugnaire FI (2012) Water release through plant roots: new insights into its consequences at the plant and ecosystem level. New Phytol 193:830–841

    PubMed  Google Scholar 

  • Quilambo OA (2000). Functioning of peanut (Arachis hypogaea L.) under nutrient deficiency and drought stress in relation to symbiotic associations. PhD thesis, University of Groningen, The Netherlands, Van Denderen B.V., Groningen

    Google Scholar 

  • Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    CAS  PubMed  Google Scholar 

  • Rennenberg H, Herschbach C, Haberer K, Kopriva S (2007) Sulfur metabolism in plants: are trees different? Plant Biol 9:620–637

    CAS  PubMed  Google Scholar 

  • Rillig MC (2004a) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754

    Google Scholar 

  • Rillig MC (2004b) Arbuscular mycorrhizae, glomalin, and soil aggregation. Can J Soil Sci 84:355–363

    Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    CAS  PubMed  Google Scholar 

  • Rillig MC, Wright SF, Eviner V (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    CAS  Google Scholar 

  • Rillig MC, Sosa-Hernandez MA, Roy J, Aguilar-Trigueros CA, Valyi K, Lehmann A (2016) Towards an integrated mycorrhizal technology: harnessing mycorrhiza for sustainable intensification in agriculture. Front Plant Sci 7:1625

    PubMed  PubMed Central  Google Scholar 

  • Rinaudo V, Bàrberi P, Giovannetti M, van der Heijden MGA (2010) Mutualistic fungi suppress aggressive agricultural weeds. Plant Soil 333:7–20

    CAS  Google Scholar 

  • Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9:1053–1061

    PubMed  Google Scholar 

  • Rojas-Andrade R, Cerda-Garcia-Rojas CM, Frias-Hernandez JT, Dendooven L, Olalde-Portugal V, Ramos-Valdivia AC (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza 13:49–52

    CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies. Mycorrhiza 13:309–317

    PubMed  Google Scholar 

  • Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63(11):4033–4044

    CAS  PubMed  Google Scholar 

  • Sailo GL, Bagyaraj DJ (2005) Influence of different AM fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109:795–798

    CAS  PubMed  Google Scholar 

  • Sambandan K, Kannan K, Raman N (1992) Distribution of vesicular-arbuscular mycorrhizal fungi in heavy metal polluted soils of Tamil-Nadu, India. J Environ Biol 13:159–167

    CAS  Google Scholar 

  • Saxena B, Shukla K, Giri B (2017) Arbuscular mycorrhizal fungi and tolerance of salt stress in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer, Singapore, pp 67–97

    Google Scholar 

  • Scagel CF, Lee J (2012) Phenolic composition of basil plants is differentially altered by plant nutrient status and inoculation with mycorrhizal fungi. Hortic Sci 47:660–671

    CAS  Google Scholar 

  • Scherer HW (2001) Sulphur in crop production. Eur J Agron 14:81–111

    CAS  Google Scholar 

  • Scheublin TR, Sanders IR, Keel C, van der Meer JR (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4:752–763

    PubMed  Google Scholar 

  • Schreiner RP, Mihara KL, McDaniel H, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–209

    CAS  Google Scholar 

  • Schultz RC, Colletti JP, Isenhart TM, Simkins WW, Mize CW, Thompson ML (1995) Design and placement of a multi-species riparian buffer strip system. Agrofor Syst 29:1–16

    Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Shabani L, Sabzalian MR, Mostafavi S (2016) Arbuscular mycorrhiza affects nickel translocation and expression of ABC transporter and metallothionein genes in Festuca arundinacea. Mycorrhiza 26:67–76

    CAS  PubMed  Google Scholar 

  • Shakeel M, Yaseen T (2016) A review on exploring the weed suppressing characteristics of arbuscular mycorrhizal fungi for enhanced plant yield and productivity. Sci Technol Dev 35:54–62

    Google Scholar 

  • Shalaby AM, Hanna MM (1998) Preliminary studies on interactions between VA mycorrhizal fungus Glomus mosseae, Bradyrhizobium japonicum and Pseudomonas syringae in soybean plants. Acta Microbiol Pol 47:385–391

    Google Scholar 

  • Sharma S, Anand G, Singh N, Kapoor R (2017) Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism. Front Plant Sci 8:906. https://doi.org/10.3389/fpls.2017.00906

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Prasad R, Varma A, Sharma AK (2017) Glycoprotein associated with Funneliformis coronatum, Gigaspora margarita and Acaulospora scrobiculata suppress the plant pathogens in vitro. Asian J Plant Pathol. https://doi.org/10.3923/ajppaj.2017

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva VC, Alves PAC, de Oliveira RA, de Jesus RM, do Bomfim Costa LC, Gross E (2014) Influence of arbuscular mycorrhizal fungi on growth, mineral composition and production of essential oil in Mentha × piperita L. var. citrata (Ehrh.) Briq. under two phosphorus levels. J Med Plants Res 8:1321–1332

    Google Scholar 

  • Simard SW, Austin ME (2010) The role of mycorrhizas in forest soil stability with climate change. In: Simard S (ed) Climate change and variability. In Tech, Rijeka, Croatia, pp 275–302

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Socolow RH (1999) Nitrogen management and the future of food: lessons from the management of energy and carbon. Proc Natl Acad Sci USA 96:6001–6008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solaiman ZM, Abbott LK, Varma A (eds) (2014) Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer, Berlin

    Google Scholar 

  • Srinivasan R, Govindasamy C (2014) Influence of native arbuscular mycorrhizal fungi on growth, nutrition and phytochemical constituents of Catharanthus roseus (L.) G. Don. J Coast Life Med 2:31–37

    Google Scholar 

  • Stanley MR, Koide RT, Shumway DL (1993) Mycorrhizal symbiosis increases growth, reproduction and recruitment of Abutilon theophrasti Medic. in the field. Oecologia 94:30–35

    PubMed  Google Scholar 

  • Suharno, Soetarto ES, Sancayaningsih RP, Kasiamdari RS (2017) Association of arbuscular mycorrhizal fungi (AMF) with Brachiaria precumbens (Poaceae) in tailing and its potential to increase the growth of maize (Zea mays). Biodiversitas 18:433–441

    Google Scholar 

  • Sundaresan P, Raja NU, Gunasekaran P (1993) Induction and accumulation of phytoalexins in cowpea roots infected with the mycorrhizal fungus Glomus fasciculatum and their resistance to Fusarium wilt disease. J Biosci 18:291–301

    CAS  Google Scholar 

  • Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77:350–363

    Google Scholar 

  • Treseder KK (2016) Model behavior of arbuscular mycorrhizal fungi: predicting soil carbon dynamics under climate change. Botany 94:417–423

    CAS  Google Scholar 

  • Turnau K, Anielska T, Ryszka P, Gawronski S, Ostachowicz B, Jurkiewicz A (2008) Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes – new solution for waste revegetation. Plant Soil 305:267–280

    CAS  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf Engel R, Boller T, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • van der Heijden MGA, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423

    PubMed  Google Scholar 

  • Veiga RSL, Jansa J, Frossard E, van der Heijden MGA (2011) Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS One 6:e27825

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veiga RSL, Howard K, van der Heijden MGA (2012) No evidence for allelopathic effects of arbuscular mycorrhizal fungi on the non-host plant Stellaria media. Plant Soil 360:319–331

    CAS  Google Scholar 

  • Verbruggen E, Veresoglou SD, Anderson IC, Caruso T, Hammer EC, Kohler J (2013) Arbuscular mycorrhizal fungi – short-term liability but long-term benefits for soil carbon storage? New Phytol 197:366–368

    PubMed  Google Scholar 

  • Veresoglou SD, Chen BD, Rillig MC (2012a) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biol Biochem 46:53–62

    CAS  Google Scholar 

  • Veresoglou SD, Shaw LJ, Hooker JE, Sen R (2012b) Arbuscular mycorrhizal modulation of diazotrophic and denitrifying microbial communities in the (mycor)rhizosphere of Plantago lanceolata. Soil Biol Biochem 53:78–81

    CAS  Google Scholar 

  • Verzeaux J, Nivelle E, Roger D, Hirel B, Dubois F, Tetu T (2017) Spore density of arbuscular mycorrhizal fungi is fostered by six years of a no-till system and is correlated with environmental parameters in a silty loam soil. Agronomy 7(2):38

    Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA 111:5266–5270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol 205:1632–1645

    CAS  PubMed  Google Scholar 

  • Walder F, Boller T, Wiemken A, Courty PE (2016) Regulation of plants’ phosphate uptake in common mycorrhizal networks: role of intraradical fungal phosphate transporters. Plant Signal Behav 11:e1131372

    PubMed  PubMed Central  Google Scholar 

  • Weber JG (2014) A decade of natural gas development: the makings of a resource curse? Resour Energy Econ 37:168–183

    Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Google Scholar 

  • Whiteside MD, Garcia MO, Treseder KK (2012) Amino acid uptake in arbuscular mycorrhizal plants. PLoS One 7:e47643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitmore A (2006) The emperors new clothes: sustainable mining? J Clean Prod 14:309–314

    Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    PubMed  Google Scholar 

  • Wright SF, Anderson RL (2000) Aggregate stability and glomalin in alternative crop rotations for the central great plains. Biol Fertil Soils 31:249–253

    CAS  Google Scholar 

  • Wright SF, Upadhaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Google Scholar 

  • Wright SF, Franke-Snyder M, Morton JB, Upadhyaya A (1996) Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193–203

    CAS  Google Scholar 

  • Wu QS, Xia RX (2006) Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163:417–425

    CAS  PubMed  Google Scholar 

  • Wu Q-S, Cao M-Q, Zou YH, He XH (2014a) Direct and indirect effects of glomalin, mycorrhizal hyphae, and roots on aggregate stability in rhizosphere of trifoliate orange. Sci Rep 4:5823. https://doi.org/10.1038/srep05823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, McGrouther K, Huang J, Wu P, Wu W, Wang H (2014b) Decomposition and the contribution of glomalin-related soil protein (GRSP) in heavy metal sequestration: field experiment. Soil Biol Biochem 68:283–290

    CAS  Google Scholar 

  • Yang YR, Han XZ, Liang Y, Amit G, Chen J, Tang M (2015) The combined effects of arbuscular mycorrhizal fungi (AMF) and lead (Pb) stress on Pb accumulation, plant growth parameters, photosynthesis, and antioxidant enzymes in Robinia pseudoacacia L. PLoS One 10(12):e0145726. https://doi.org/10.1371/journal.pone.0145726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Ou X, Yang G, Xia Y, Chen M, Guo L, Liu D (2017) Arbuscular mycorrhizal fungi regulate the growth and phyto-active compound of Salvia miltiorrhiza seedlings. Appl Sci 7:68

    CAS  Google Scholar 

  • Yao MK, Desilets H, Charles MT, Boulanger R, Tweddell RJ (2003) Effect of mycorrhization on the accumulation of rishitin and solavetivone in potato plantlets challenged with Rhizoctonia solani. Mycorrhiza 13:333–336

    CAS  PubMed  Google Scholar 

  • Zhao X, Wang Y, Yan XF (2007) Effect of arbuscular mycorrhiza fungi and phosphorus on camptothecin content in Camptotheca acuminata seedlings. Allelopath J 20:51–60

    Google Scholar 

  • Zhu XQ, Wang CY, Chen H (2014) Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica 52:247–252

    CAS  Google Scholar 

  • Zobel M, Öpik M (2014) Plant and arbuscular mycorrhizal fungal (AMF) communities-which drives which? J Veg Sci 25:1133–1140

    Google Scholar 

  • Zolfaghari M, Nazeri V, Sefidkon F, Rejali F (2012) Effect of arbuscular mycorrhizal fungi on plant growth and essential oil content and composition of Ocimum basilicum L. Iranian. J Plant Physiol 3:643–650

    Google Scholar 

  • Zubek S, Mielcarek S, Turnau K (2012) Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi. Mycorrhiza 22:149–156

    CAS  PubMed  Google Scholar 

  • Zubek S, Rola K, Szewczyk A, Majewska ML, Turnau K (2015) Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi. Plant Soil 390:129–142

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhoopander Giri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, P., Saxena, B., Giri, B. (2017). Arbuscular Mycorrhizal Fungi: Green Approach/Technology for Sustainable Agriculture and Environment. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. https://doi.org/10.1007/978-3-319-68867-1_20

Download citation

Publish with us

Policies and ethics