Skip to main content
Erschienen in:
Buchtitelbild

2018 | OriginalPaper | Buchkapitel

1. Introduction

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Primordial life forms on earth comprised oxygen-sensitive organisms: the anaerobic fermenters and cyanobacteria, which released oxygen as a metabolic by-product, causing the oxygen levels in the atmosphere to rise Benzie (Eur J Nutr 39:53–61, 2000 [1]), Halliwell (Free Radic Res 31:261–272, 1999 [2]).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F.I.F. Benzie, Evolution of antioxidant defence mechanisms. Eur. J. Nutr. 39, 53–61 (2000)CrossRef F.I.F. Benzie, Evolution of antioxidant defence mechanisms. Eur. J. Nutr. 39, 53–61 (2000)CrossRef
2.
Zurück zum Zitat B. Halliwell, Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic. Res. 31, 261–272 (1999)CrossRef B. Halliwell, Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic. Res. 31, 261–272 (1999)CrossRef
3.
Zurück zum Zitat S.I. Liochev, Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 60, 1–4 (2013)CrossRef S.I. Liochev, Reactive oxygen species and the free radical theory of aging. Free Radic. Biol. Med. 60, 1–4 (2013)CrossRef
4.
Zurück zum Zitat O.I. Aruoma, H. Kaur, B. Halliwell, Oxygen free radicals and human diseases. J. R. Soc. Health 111, 172–177 (1991)CrossRef O.I. Aruoma, H. Kaur, B. Halliwell, Oxygen free radicals and human diseases. J. R. Soc. Health 111, 172–177 (1991)CrossRef
5.
Zurück zum Zitat M. Valko, D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84 (2007)CrossRef M. Valko, D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur, J. Telser, Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39, 44–84 (2007)CrossRef
6.
Zurück zum Zitat R. Gerschman, D.L. Gilbert, S.W. Nye, P. Dwyer, W.O. Fenn, Oxygen poisoning and X-irradiation: a mechanism in common. Science 119, 623–626 (1954)CrossRef R. Gerschman, D.L. Gilbert, S.W. Nye, P. Dwyer, W.O. Fenn, Oxygen poisoning and X-irradiation: a mechanism in common. Science 119, 623–626 (1954)CrossRef
7.
Zurück zum Zitat N.S. Dhalla, R.M. Temsah, T. Netticadan, Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18, 655–673 (2000)CrossRef N.S. Dhalla, R.M. Temsah, T. Netticadan, Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18, 655–673 (2000)CrossRef
8.
Zurück zum Zitat E.H. Sarsour, M.G. Kumar, L. Chaudhuri, A.L. Kalen, P.C. Goswami, Redox control of the cell cycle in health and disease. Antioxid. Redox Signal. 11, 2985–3011 (2009a)CrossRef E.H. Sarsour, M.G. Kumar, L. Chaudhuri, A.L. Kalen, P.C. Goswami, Redox control of the cell cycle in health and disease. Antioxid. Redox Signal. 11, 2985–3011 (2009a)CrossRef
9.
Zurück zum Zitat T.C. Jorgenson, W. Zhong, T.D. Oberley, Redox imbalance and biochemical changes in cancer. Cancer Res. 73, 6118–6123 (2013)CrossRef T.C. Jorgenson, W. Zhong, T.D. Oberley, Redox imbalance and biochemical changes in cancer. Cancer Res. 73, 6118–6123 (2013)CrossRef
10.
Zurück zum Zitat H. Kamata, H. Hirata, Redox regulation of cellular signalling. Cell. Signal. 11, 1–14 (1999)CrossRef H. Kamata, H. Hirata, Redox regulation of cellular signalling. Cell. Signal. 11, 1–14 (1999)CrossRef
11.
Zurück zum Zitat B. D’Autreaux, M.B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007)CrossRef B. D’Autreaux, M.B. Toledano, ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007)CrossRef
12.
Zurück zum Zitat C.C. Winterbourn, The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochimica et Biophysica Acta (BBA)—General Subjects 1840, 730–738 (2014) C.C. Winterbourn, The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochimica et Biophysica Acta (BBA)—General Subjects 1840, 730–738 (2014)
13.
Zurück zum Zitat B. Kalyanaraman, V. Darley-Usmar, K.J.A. Davies, P.A. Dennery, H.J. Forman, M.B. Grisham, G.E. Mann, K. Moore, L.J. Roberts, H. Ischiropoulos, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. 52, 1–6 (2012)CrossRef B. Kalyanaraman, V. Darley-Usmar, K.J.A. Davies, P.A. Dennery, H.J. Forman, M.B. Grisham, G.E. Mann, K. Moore, L.J. Roberts, H. Ischiropoulos, Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic. Biol. Med. 52, 1–6 (2012)CrossRef
14.
Zurück zum Zitat M.D. Brand, C. Affourtit, T.C. Esteves, K. Green, A.J. Lambert, S. Miwa, J.L. Pakay, N. Parker, Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic. Biol. Med. 37, 755–767 (2004)CrossRef M.D. Brand, C. Affourtit, T.C. Esteves, K. Green, A.J. Lambert, S. Miwa, J.L. Pakay, N. Parker, Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic. Biol. Med. 37, 755–767 (2004)CrossRef
15.
Zurück zum Zitat T. Finkel, N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000)CrossRef T. Finkel, N.J. Holbrook, Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000)CrossRef
16.
Zurück zum Zitat B. Halliwell, Generation of hydrogen peroxide, superoxide and hydroxyl radicals during the oxidation of dihydroxyfumaric acid by peroxidase. Biochem. J. 163, 441–448 (1977)CrossRef B. Halliwell, Generation of hydrogen peroxide, superoxide and hydroxyl radicals during the oxidation of dihydroxyfumaric acid by peroxidase. Biochem. J. 163, 441–448 (1977)CrossRef
17.
Zurück zum Zitat M. Valko, H. Morris, M.T.D. Cronin, Metals, Toxicity and Oxidative Stress (2005) M. Valko, H. Morris, M.T.D. Cronin, Metals, Toxicity and Oxidative Stress (2005)
18.
Zurück zum Zitat C.H. Foyer, H. Lopez-Delgado, J.F. Dat, I.M. Scott, Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant. 100, 241–254 (1997)CrossRef C.H. Foyer, H. Lopez-Delgado, J.F. Dat, I.M. Scott, Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiol. Plant. 100, 241–254 (1997)CrossRef
19.
Zurück zum Zitat E. Pinto, T.C.S. Sigaud-kutner, M.A.S. Leitão, O.K. Okamoto, D. Morse, P. Colepicolo, Heavy metal-induced oxidative stress in. J. Phycol. 39, 1008–1018 (2003)CrossRef E. Pinto, T.C.S. Sigaud-kutner, M.A.S. Leitão, O.K. Okamoto, D. Morse, P. Colepicolo, Heavy metal-induced oxidative stress in. J. Phycol. 39, 1008–1018 (2003)CrossRef
20.
Zurück zum Zitat J.M. Pullar, M.C.M. Vissers, C.C. Winterbourn, Living with a killer: the effects of hypochlorous acid on mammalian cells. IUBMB Life 50, 259–266 (2000)CrossRef J.M. Pullar, M.C.M. Vissers, C.C. Winterbourn, Living with a killer: the effects of hypochlorous acid on mammalian cells. IUBMB Life 50, 259–266 (2000)CrossRef
21.
Zurück zum Zitat L.J. Ignarro, Nitric oxide: a unique endogenous signaling molecule in vascular biology (Nobel Lecture). Angew. Chem. Int. Ed. 38, 1882–1892 (1999)CrossRef L.J. Ignarro, Nitric oxide: a unique endogenous signaling molecule in vascular biology (Nobel Lecture). Angew. Chem. Int. Ed. 38, 1882–1892 (1999)CrossRef
22.
Zurück zum Zitat R.F. Furchgott, Endothelium-derived relaxing factor: discovery, early studies, and identifcation as nitric oxide (nobel lecture). Angew. Chem. Int. Ed. 38, 1870–1880 (1999)CrossRef R.F. Furchgott, Endothelium-derived relaxing factor: discovery, early studies, and identifcation as nitric oxide (nobel lecture). Angew. Chem. Int. Ed. 38, 1870–1880 (1999)CrossRef
23.
Zurück zum Zitat D. Hirst, T. Robson, Nitric oxide physiology and pathology, in Nitric Oxide, ed. by H.O. McCarthy, J.A. Coulter), vol. 704, Chap. 1 (Humana Press, 2011), pp. 1–13 D. Hirst, T. Robson, Nitric oxide physiology and pathology, in Nitric Oxide, ed. by H.O. McCarthy, J.A. Coulter), vol. 704, Chap. 1 (Humana Press, 2011), pp. 1–13
24.
Zurück zum Zitat S. Moncada, R.M. Palmer, E.A. Higgs, Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991) S. Moncada, R.M. Palmer, E.A. Higgs, Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991)
25.
Zurück zum Zitat M.P. Murphy, M.A. Packer, J.L. Scarlett, S.W. Martin, Peroxynitrite: a biologically significant oxidant. Gen. Pharmacol.: Vasc. Syst. 31, 179–186 (1998) M.P. Murphy, M.A. Packer, J.L. Scarlett, S.W. Martin, Peroxynitrite: a biologically significant oxidant. Gen. Pharmacol.: Vasc. Syst. 31, 179–186 (1998)
26.
Zurück zum Zitat P.Á.L. Pacher, J.S. Beckman, L. Liaudet, Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007)CrossRef P.Á.L. Pacher, J.S. Beckman, L. Liaudet, Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007)CrossRef
27.
Zurück zum Zitat V. Sosa, T. Moline, R. Somoza, R. Paciucci, H. Kondoh, L.L. Me, Oxidative stress and cancer: an overview. Ageing Res. Rev. 12, 376–390 (2013)CrossRef V. Sosa, T. Moline, R. Somoza, R. Paciucci, H. Kondoh, L.L. Me, Oxidative stress and cancer: an overview. Ageing Res. Rev. 12, 376–390 (2013)CrossRef
28.
Zurück zum Zitat P.H.G.M. Willems, R. Rossignol, C.E.J. Dieteren, M.P. Murphy, W.J.H. Koopman, Redox homeostasis and mitochondrial dynamics. Cell Metab. 22, 207–18 (2015)CrossRef P.H.G.M. Willems, R. Rossignol, C.E.J. Dieteren, M.P. Murphy, W.J.H. Koopman, Redox homeostasis and mitochondrial dynamics. Cell Metab. 22, 207–18 (2015)CrossRef
29.
Zurück zum Zitat M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014)CrossRef M. Schieber, N.S. Chandel, ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014)CrossRef
30.
Zurück zum Zitat K. Sinha, J. Das, P.B. Pal, P.C. Sil, Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. 87, 1157–1180 (2013)CrossRef K. Sinha, J. Das, P.B. Pal, P.C. Sil, Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. 87, 1157–1180 (2013)CrossRef
31.
Zurück zum Zitat A.A. Starkov, The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N. Y. Acad. Sci. 1147, 37–52 (2008)CrossRef A.A. Starkov, The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N. Y. Acad. Sci. 1147, 37–52 (2008)CrossRef
32.
Zurück zum Zitat M. Rojkind, J.A. Dominguez-Rosales, N. Nieto, P. Greenwel, Role of hydrogen peroxide and oxidative stress in healing responses. Cell. Mol. Life Sci. 59, 1872–1891 (2002)CrossRef M. Rojkind, J.A. Dominguez-Rosales, N. Nieto, P. Greenwel, Role of hydrogen peroxide and oxidative stress in healing responses. Cell. Mol. Life Sci. 59, 1872–1891 (2002)CrossRef
33.
Zurück zum Zitat M. Noble, J. Smith, J. Power, M. Mayer-Proschel, Redox state as a central modulator of precursor cell function. Ann. N. Y. Acad. Sci. 991, 251–271 (2003)CrossRef M. Noble, J. Smith, J. Power, M. Mayer-Proschel, Redox state as a central modulator of precursor cell function. Ann. N. Y. Acad. Sci. 991, 251–271 (2003)CrossRef
34.
Zurück zum Zitat T. Finkel, Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15 (2011)CrossRef T. Finkel, Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15 (2011)CrossRef
35.
Zurück zum Zitat C.C. Winterbourn, M.B. Hampton, Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549–561 (2008)CrossRef C.C. Winterbourn, M.B. Hampton, Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549–561 (2008)CrossRef
36.
Zurück zum Zitat T. Finkel, From sulfenylation to sulfhydration: what a thiolate needs to tolerate. Sci. Signal. 5, pe10(2012) T. Finkel, From sulfenylation to sulfhydration: what a thiolate needs to tolerate. Sci. Signal. 5, pe10(2012)
37.
Zurück zum Zitat E.H. Sarsour, M.G. Kumar, L. Chaudhuri, A.L. Kalen, P.C. Goswami, Redox control of the cell cycle in health and disease. Antioxid. Redox Signal. 11, 2985–3011 (2009)CrossRef E.H. Sarsour, M.G. Kumar, L. Chaudhuri, A.L. Kalen, P.C. Goswami, Redox control of the cell cycle in health and disease. Antioxid. Redox Signal. 11, 2985–3011 (2009)CrossRef
38.
Zurück zum Zitat E.R. Stadtman, B.S. Berlett, Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab. Rev. 30, 225–243 (1998)CrossRef E.R. Stadtman, B.S. Berlett, Reactive oxygen-mediated protein oxidation in aging and disease. Drug Metab. Rev. 30, 225–243 (1998)CrossRef
39.
Zurück zum Zitat J.S. Dawane, V.A. Pandit, Understanding redox homeostasis and its role in cancer. J. Clin. Diagn. Res. 6, 1796–1802 (2012) J.S. Dawane, V.A. Pandit, Understanding redox homeostasis and its role in cancer. J. Clin. Diagn. Res. 6, 1796–1802 (2012)
40.
Zurück zum Zitat R. Zhu, Y. Wang, L. Zhang, Q. Guo, Oxidative stress and liver disease. Hepatol. Res. 42, 741–749 (2012)CrossRef R. Zhu, Y. Wang, L. Zhang, Q. Guo, Oxidative stress and liver disease. Hepatol. Res. 42, 741–749 (2012)CrossRef
41.
Zurück zum Zitat H.K. Vincent, A.G. Taylor, Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int. J. Obes. (Lond) 30, 400–418 (2006)CrossRef H.K. Vincent, A.G. Taylor, Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int. J. Obes. (Lond) 30, 400–418 (2006)CrossRef
42.
Zurück zum Zitat D. Athanasiou, M. Aguila, D. Bevilacqua, S.S. Novoselov, D.A. Parfitt, M.E. Cheetham, The cell stress machinery and retinal degeneration. FEBS Lett. 587, 2008–2017 (2013)CrossRef D. Athanasiou, M. Aguila, D. Bevilacqua, S.S. Novoselov, D.A. Parfitt, M.E. Cheetham, The cell stress machinery and retinal degeneration. FEBS Lett. 587, 2008–2017 (2013)CrossRef
43.
Zurück zum Zitat Y.J.H.J. Taverne, A.J.J.C. Bogers, D.J. Duncker, D. Merkus, Reactive oxygen species and the cardiovascular system. Oxid. Med. Cell. Longev. 2013, 15 (2013)CrossRef Y.J.H.J. Taverne, A.J.J.C. Bogers, D.J. Duncker, D. Merkus, Reactive oxygen species and the cardiovascular system. Oxid. Med. Cell. Longev. 2013, 15 (2013)CrossRef
44.
Zurück zum Zitat M. Mohsenzadegan, A. Mirshafiey, The immunopathogenic role of reactive oxygen species in Alzheimer disease. Iran J. Allergy Asthma Immunol. 11, 203–216 (2012) M. Mohsenzadegan, A. Mirshafiey, The immunopathogenic role of reactive oxygen species in Alzheimer disease. Iran J. Allergy Asthma Immunol. 11, 203–216 (2012)
45.
Zurück zum Zitat C. Garcia-Ruiz, J.C. Fernandez-Checa, Redox regulation of hepatocyte apoptosis. J. Gastroenterol. Hepatol. 22(Suppl 1), S38–42 (2007)CrossRef C. Garcia-Ruiz, J.C. Fernandez-Checa, Redox regulation of hepatocyte apoptosis. J. Gastroenterol. Hepatol. 22(Suppl 1), S38–42 (2007)CrossRef
46.
Zurück zum Zitat M. Ristow, K. Zarse, A. Oberbach, N. Klöting, M. Birringer, M. Kiehntopf, M. Stumvoll, C.R. Kahn, M. Blüher, Antioxidants prevent health-promoting effects of physical exercise in humans (Proc. Natl. Acad, Sci, 2009) M. Ristow, K. Zarse, A. Oberbach, N. Klöting, M. Birringer, M. Kiehntopf, M. Stumvoll, C.R. Kahn, M. Blüher, Antioxidants prevent health-promoting effects of physical exercise in humans (Proc. Natl. Acad, Sci, 2009)
47.
Zurück zum Zitat H. Sies, Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82, 291–295 (1997)CrossRef H. Sies, Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82, 291–295 (1997)CrossRef
48.
Zurück zum Zitat A. Skoumalova, J. Hort, Blood markers of oxidative stress in Alzheimer’s disease. J. Cell Mol. Med. 16, 2291–2300 (2012)CrossRef A. Skoumalova, J. Hort, Blood markers of oxidative stress in Alzheimer’s disease. J. Cell Mol. Med. 16, 2291–2300 (2012)CrossRef
49.
Zurück zum Zitat D. Montero, G. Walther, A. Perez-Martin, E. Roche, A. Vinet, Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: markers and effect of lifestyle intervention. Obes. Rev. 13, 441–455 (2012)CrossRef D. Montero, G. Walther, A. Perez-Martin, E. Roche, A. Vinet, Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: markers and effect of lifestyle intervention. Obes. Rev. 13, 441–455 (2012)CrossRef
50.
Zurück zum Zitat J. Skrha, Effect of caloric restriction on oxidative markers. Adv. Clin. Chem. 47, 223–247 (2009)CrossRef J. Skrha, Effect of caloric restriction on oxidative markers. Adv. Clin. Chem. 47, 223–247 (2009)CrossRef
51.
Zurück zum Zitat H. Yin, New techniques to detect oxidative stress markers: mass spectrometry-based methods to detect isoprostanes as the gold standard for oxidative stress in vivo. BioFactors 34, 109–124 (2008)CrossRef H. Yin, New techniques to detect oxidative stress markers: mass spectrometry-based methods to detect isoprostanes as the gold standard for oxidative stress in vivo. BioFactors 34, 109–124 (2008)CrossRef
52.
Zurück zum Zitat H.K. Kim, A.C. Andreazza, The relationship between oxidative stress and post-translational modification of the dopamine transporter in bipolar disorder. Expert Rev. Neurother. 12, 849–859 (2012)CrossRef H.K. Kim, A.C. Andreazza, The relationship between oxidative stress and post-translational modification of the dopamine transporter in bipolar disorder. Expert Rev. Neurother. 12, 849–859 (2012)CrossRef
53.
Zurück zum Zitat A.M. Pickering, L. Vojtovich, J. Tower, A.D. KJ, Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radic. Biol. Med. 55, 109–118 (2013)CrossRef A.M. Pickering, L. Vojtovich, J. Tower, A.D. KJ, Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radic. Biol. Med. 55, 109–118 (2013)CrossRef
54.
Zurück zum Zitat W.A. Pryor, S.S. Godber, Noninvasive measures of oxidative stress status in humans. Free Radic. Biol. Med. 10, 177–184 (1991)CrossRef W.A. Pryor, S.S. Godber, Noninvasive measures of oxidative stress status in humans. Free Radic. Biol. Med. 10, 177–184 (1991)CrossRef
55.
Zurück zum Zitat M.A. Smith, C.A. Rottkamp, A. Nunomura, A.K. Raina, G. Perry, Oxidative stress in Alzheimer’s disease. Biochimica et Biophysica Acta (BBA)—Mol. Basis Disease 1502, 139–144 (2000) M.A. Smith, C.A. Rottkamp, A. Nunomura, A.K. Raina, G. Perry, Oxidative stress in Alzheimer’s disease. Biochimica et Biophysica Acta (BBA)—Mol. Basis Disease 1502, 139–144 (2000)
56.
Zurück zum Zitat I. Dalle-Donne, R. Rossi, R. Colombo, D. Giustarini, A. Milzani, Biomarkers of oxidative damage in human disease. Clin. Chem. 52, 601–623 (2006)CrossRef I. Dalle-Donne, R. Rossi, R. Colombo, D. Giustarini, A. Milzani, Biomarkers of oxidative damage in human disease. Clin. Chem. 52, 601–623 (2006)CrossRef
57.
Zurück zum Zitat H.N. Xu, J. Tchou, L.Z. Li, Redox imaging of human breast cancer core biopsies: a preliminary investigation. Acad. Radiol. 20, 764–768 (2013)CrossRef H.N. Xu, J. Tchou, L.Z. Li, Redox imaging of human breast cancer core biopsies: a preliminary investigation. Acad. Radiol. 20, 764–768 (2013)CrossRef
58.
Zurück zum Zitat T. Kullisaar, S. Turk, K. Kilk, K. Ausmees, M. Punab, R. Mandar, Increased levels of hydrogen peroxide and nitric oxide in male partners of infertile couples. Andrology 1, 850–858 (2013)CrossRef T. Kullisaar, S. Turk, K. Kilk, K. Ausmees, M. Punab, R. Mandar, Increased levels of hydrogen peroxide and nitric oxide in male partners of infertile couples. Andrology 1, 850–858 (2013)CrossRef
59.
Zurück zum Zitat R. Stocker, J.F. Keaney Jr., Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84, 1381–1478 (2004)CrossRef R. Stocker, J.F. Keaney Jr., Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84, 1381–1478 (2004)CrossRef
60.
Zurück zum Zitat D. Ortiz de Orue, Lucana, Redox sensing: novel avenues and paradigms. Antioxid. Redox Signal. 16, 636–638 (2012)CrossRef D. Ortiz de Orue, Lucana, Redox sensing: novel avenues and paradigms. Antioxid. Redox Signal. 16, 636–638 (2012)CrossRef
61.
Zurück zum Zitat S.I. Dikalov, D.G. Harrison, Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid. Redox Signal. 20, 372–382 (2014)CrossRef S.I. Dikalov, D.G. Harrison, Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid. Redox Signal. 20, 372–382 (2014)CrossRef
62.
Zurück zum Zitat E. Finkelstein, G.M. Rosen, E.J. Rauckman, Spin trapping of superoxide and hydroxyl radical: practical aspects. Arch. Biochem. Biophys. 200, 1–16 (1980)CrossRef E. Finkelstein, G.M. Rosen, E.J. Rauckman, Spin trapping of superoxide and hydroxyl radical: practical aspects. Arch. Biochem. Biophys. 200, 1–16 (1980)CrossRef
63.
Zurück zum Zitat M.M. Tarpey, D.A. Wink, M.B. Grisham, Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R431–44 (2004)CrossRef M.M. Tarpey, D.A. Wink, M.B. Grisham, Methods for detection of reactive metabolites of oxygen and nitrogen: in vitro and in vivo considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R431–44 (2004)CrossRef
64.
Zurück zum Zitat A. Keszler, B. Kalyanaraman, N. Hogg, Comparative investigation of superoxide trapping by cyclic nitrone spin traps: the use of singular value decomposition and multiple linear regression analysis. Free Radic. Biol. Med. 35, 1149–1157 (2003)CrossRef A. Keszler, B. Kalyanaraman, N. Hogg, Comparative investigation of superoxide trapping by cyclic nitrone spin traps: the use of singular value decomposition and multiple linear regression analysis. Free Radic. Biol. Med. 35, 1149–1157 (2003)CrossRef
65.
Zurück zum Zitat N. Khan, C.M. Wilmot, G.M. Rosen, E. Demidenko, J. Sun, J. Joseph, J. O’Hara, B. Kalyanaraman, H.M. Swartz, Spin traps: in vitro toxicity and stability of radical adducts. Free Radic. Biol. Med. 34, 1473–1481 (2003)CrossRef N. Khan, C.M. Wilmot, G.M. Rosen, E. Demidenko, J. Sun, J. Joseph, J. O’Hara, B. Kalyanaraman, H.M. Swartz, Spin traps: in vitro toxicity and stability of radical adducts. Free Radic. Biol. Med. 34, 1473–1481 (2003)CrossRef
66.
Zurück zum Zitat C. Frejaville, H. Karoui, B. Tuccio, F. Le Moigne, M. Culcasi, S. Pietri, R. Lauricella, P. Tordo, 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide: a new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen-centered radicals. J. Med. Chem. 38, 258–265 (1995)CrossRef C. Frejaville, H. Karoui, B. Tuccio, F. Le Moigne, M. Culcasi, S. Pietri, R. Lauricella, P. Tordo, 5-(Diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide: a new efficient phosphorylated nitrone for the in vitro and in vivo spin trapping of oxygen-centered radicals. J. Med. Chem. 38, 258–265 (1995)CrossRef
67.
Zurück zum Zitat M. Hardy, A. Rockenbauer, J. Vasquez-Vivar, C. Felix, M. Lopez, S. Srinivasan, N. Avadhani, P. Tordo, B. Kalyanaraman, Detection, characterization, and decay kinetics of ROS and thiyl adducts of mito-DEPMPO spin trap. Chem. Res. Toxicol. 20, 1053–1060 (2007)CrossRef M. Hardy, A. Rockenbauer, J. Vasquez-Vivar, C. Felix, M. Lopez, S. Srinivasan, N. Avadhani, P. Tordo, B. Kalyanaraman, Detection, characterization, and decay kinetics of ROS and thiyl adducts of mito-DEPMPO spin trap. Chem. Res. Toxicol. 20, 1053–1060 (2007)CrossRef
68.
Zurück zum Zitat V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, J.L. Zweier, Quantitative measurement of superoxide generation using the spin trap 5-(Diethoxyphosphoryl)-5-methyl- 1-pyrroline-N-oxide. Anal. Biochem. 247, 404–411 (1997)CrossRef V. Roubaud, S. Sankarapandi, P. Kuppusamy, P. Tordo, J.L. Zweier, Quantitative measurement of superoxide generation using the spin trap 5-(Diethoxyphosphoryl)-5-methyl- 1-pyrroline-N-oxide. Anal. Biochem. 247, 404–411 (1997)CrossRef
69.
Zurück zum Zitat S. Dikalov, M. Skatchkov, E. Bassenge, Quantification of peroxynitrite, superoxide, and peroxyl radicals by a new spin trap hydroxylamine 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine. Biochem. Biophys. Res. Commun. 230, 54–57 (1997)CrossRef S. Dikalov, M. Skatchkov, E. Bassenge, Quantification of peroxynitrite, superoxide, and peroxyl radicals by a new spin trap hydroxylamine 1-hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine. Biochem. Biophys. Res. Commun. 230, 54–57 (1997)CrossRef
70.
Zurück zum Zitat S. Dikalov, M. Skatchkov, E. Bassenge, Spin trapping of superoxide radicals and peroxynitrite by 1-Hydroxy-3-carboxy-pyrrolidine and 1-Hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine and the Stability of Corresponding Nitroxyl Radicals Towards Biological Reductants. Biochem. Biophys. Res. Commun. 231, 701–704 (1997)CrossRef S. Dikalov, M. Skatchkov, E. Bassenge, Spin trapping of superoxide radicals and peroxynitrite by 1-Hydroxy-3-carboxy-pyrrolidine and 1-Hydroxy-2,2,6,6-tetramethyl-4-oxo-piperidine and the Stability of Corresponding Nitroxyl Radicals Towards Biological Reductants. Biochem. Biophys. Res. Commun. 231, 701–704 (1997)CrossRef
71.
Zurück zum Zitat J. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, 1999)CrossRef J. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum Publishers, New York, Boston, Dordrecht, London, Moscow, 1999)CrossRef
72.
Zurück zum Zitat M.Y. Berezin, S. Achilefu, Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010)CrossRef M.Y. Berezin, S. Achilefu, Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2684 (2010)CrossRef
73.
Zurück zum Zitat N.J. Emptage, Fluorescent imaging in living systems. Curr. Opin. Pharmacol. 1, 521–525 (2001)CrossRef N.J. Emptage, Fluorescent imaging in living systems. Curr. Opin. Pharmacol. 1, 521–525 (2001)CrossRef
74.
Zurück zum Zitat A. Gomes, E. Fernandes, J.L. Lima, Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65, 45–80 (2005)CrossRef A. Gomes, E. Fernandes, J.L. Lima, Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65, 45–80 (2005)CrossRef
75.
Zurück zum Zitat Z. Lou, P. Li, X. Sun, S. Yang, B. Wang, K. Han, A fluorescent probe for rapid detection of thiols and imaging of thiols reducing repair and H2O2 oxidative stress cycles in living cells. Chem. Commun. 49, 391–393 (2013)CrossRef Z. Lou, P. Li, X. Sun, S. Yang, B. Wang, K. Han, A fluorescent probe for rapid detection of thiols and imaging of thiols reducing repair and H2O2 oxidative stress cycles in living cells. Chem. Commun. 49, 391–393 (2013)CrossRef
76.
Zurück zum Zitat G. He, X. Zhao, X. Zhang, H. Fan, S. Wu, H. Li, C. He, C. Duan, A turn-on PET fluorescence sensor for imaging Cu2+ in living cells. New J. Chem. 34, 1055–1058 (2010)CrossRef G. He, X. Zhao, X. Zhang, H. Fan, S. Wu, H. Li, C. He, C. Duan, A turn-on PET fluorescence sensor for imaging Cu2+ in living cells. New J. Chem. 34, 1055–1058 (2010)CrossRef
77.
Zurück zum Zitat A.S. Keston, R. Brandt, The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 11, 1–5 (1965)CrossRef A.S. Keston, R. Brandt, The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 11, 1–5 (1965)CrossRef
78.
Zurück zum Zitat S. Watanabe, In vivo fluorometric measurement of cerebral oxidative stress using 2’-7’-dichlorofluorescein (DCF). Keio J. Med. 47, 92–98 (1998)CrossRef S. Watanabe, In vivo fluorometric measurement of cerebral oxidative stress using 2’-7’-dichlorofluorescein (DCF). Keio J. Med. 47, 92–98 (1998)CrossRef
79.
Zurück zum Zitat N.W. Kooy, J.A. Royall, H. Ischiropoulos, Oxidation of 2’,7’-dichlorofluorescin by peroxynitrite. Free Radic. Res. 27, 245–254 (1997)CrossRef N.W. Kooy, J.A. Royall, H. Ischiropoulos, Oxidation of 2’,7’-dichlorofluorescin by peroxynitrite. Free Radic. Res. 27, 245–254 (1997)CrossRef
80.
Zurück zum Zitat C. Rota, C.F. Chignell, R.P. Mason, Evidence for free radical formation during the oxidation of 2-7-dichlorofluorescin to the fluorescent dye 2-7-dichlorofluorescein by horseradish peroxidase: Possible implications for oxidative stress measurements. Free Radic. Biol. Med. 27, 873–881 (1999)CrossRef C. Rota, C.F. Chignell, R.P. Mason, Evidence for free radical formation during the oxidation of 2-7-dichlorofluorescin to the fluorescent dye 2-7-dichlorofluorescein by horseradish peroxidase: Possible implications for oxidative stress measurements. Free Radic. Biol. Med. 27, 873–881 (1999)CrossRef
81.
Zurück zum Zitat P. Wardman, Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic. Biol. Med. 43, 995–1022 (2007)CrossRef P. Wardman, Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic. Biol. Med. 43, 995–1022 (2007)CrossRef
82.
Zurück zum Zitat M. Wrona, K. Patel, P. Wardman, Reactivity of 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals. Free Radic. Biol. Med. 38, 262–270 (2005)CrossRef M. Wrona, K. Patel, P. Wardman, Reactivity of 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123 and their oxidized forms toward carbonate, nitrogen dioxide, and hydroxyl radicals. Free Radic. Biol. Med. 38, 262–270 (2005)CrossRef
83.
Zurück zum Zitat J.C. Sanchez, W.C. Trogler, Polymerization of a boronate-functionalized fluorophore by double transesterification: applications to fluorescence detection of hydrogen peroxide vapor. J. Mater. Chem. 18, 5134–5141 (2008) J.C. Sanchez, W.C. Trogler, Polymerization of a boronate-functionalized fluorophore by double transesterification: applications to fluorescence detection of hydrogen peroxide vapor. J. Mater. Chem. 18, 5134–5141 (2008)
84.
Zurück zum Zitat L.-C. Lo, C.-Y. Chu, Development of highly selective and sensitive probes for hydrogen peroxide. Chem. Commun., 2728–2729 (2003) L.-C. Lo, C.-Y. Chu, Development of highly selective and sensitive probes for hydrogen peroxide. Chem. Commun., 2728–2729 (2003)
85.
Zurück zum Zitat E.W. Miller, A.E. Albers, A. Pralle, E.Y. Isacoff, C.J. Chang, Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J. Am. Chem. Soc. 127, 16652–16659 (2005)CrossRef E.W. Miller, A.E. Albers, A. Pralle, E.Y. Isacoff, C.J. Chang, Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. J. Am. Chem. Soc. 127, 16652–16659 (2005)CrossRef
86.
Zurück zum Zitat A.E. Albers, V.S. Okreglak, C.J. Chang, A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide. J. Am. Chem. Soc. 128, 9640–9641 (2006)CrossRef A.E. Albers, V.S. Okreglak, C.J. Chang, A FRET-based approach to ratiometric fluorescence detection of hydrogen peroxide. J. Am. Chem. Soc. 128, 9640–9641 (2006)CrossRef
87.
Zurück zum Zitat A.E. Albers, B.C. Dickinson, E.W. Miller, C.J. Chang, A red-emitting naphthofluorescein-based fluorescent probe for selective detection of hydrogen peroxide in living cells. Bioorgan. Med. Chem. Lett. 18, 5948–5950 (2008)CrossRef A.E. Albers, B.C. Dickinson, E.W. Miller, C.J. Chang, A red-emitting naphthofluorescein-based fluorescent probe for selective detection of hydrogen peroxide in living cells. Bioorgan. Med. Chem. Lett. 18, 5948–5950 (2008)CrossRef
88.
Zurück zum Zitat B.C. Dickinson, D. Srikun, C.J. Chang, Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr. Opin. Chem. Biol. 14, 50–56 (2010)CrossRef B.C. Dickinson, D. Srikun, C.J. Chang, Mitochondrial-targeted fluorescent probes for reactive oxygen species. Curr. Opin. Chem. Biol. 14, 50–56 (2010)CrossRef
89.
Zurück zum Zitat B.C. Dickinson, C.J. Chang, Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011)CrossRef B.C. Dickinson, C.J. Chang, Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7, 504–511 (2011)CrossRef
90.
Zurück zum Zitat L. Du, M. Li, S. Zheng, B. Wang, Rational design of a fluorescent hydrogen peroxide probe based on the umbelliferone fluorophore. Tetrahedron. Lett. 49, 3045–3048 (2008)CrossRef L. Du, M. Li, S. Zheng, B. Wang, Rational design of a fluorescent hydrogen peroxide probe based on the umbelliferone fluorophore. Tetrahedron. Lett. 49, 3045–3048 (2008)CrossRef
91.
Zurück zum Zitat F. He, Y. Tang, M. Yu, S. Wang, Y. Li, D. Zhu, Fluorescence-amplifying detection of hydrogen peroxide with cationic conjugated polymers, and its application to glucose sensing. Adv. Funct. Mater. 16, 91–94 (2006)CrossRef F. He, Y. Tang, M. Yu, S. Wang, Y. Li, D. Zhu, Fluorescence-amplifying detection of hydrogen peroxide with cationic conjugated polymers, and its application to glucose sensing. Adv. Funct. Mater. 16, 91–94 (2006)CrossRef
92.
Zurück zum Zitat F. He, F. Feng, S. Wang, Y. Li, D. Zhu, Fluorescence ratiometric assays of hydrogen peroxide and glucose in serum using conjugated polyelectrolytes. J. Mater. Chem. 17, 3702–3707 (2007)CrossRef F. He, F. Feng, S. Wang, Y. Li, D. Zhu, Fluorescence ratiometric assays of hydrogen peroxide and glucose in serum using conjugated polyelectrolytes. J. Mater. Chem. 17, 3702–3707 (2007)CrossRef
93.
Zurück zum Zitat E.W. Miller, C.J. Chang, Fluorescent probes for nitric oxide and hydrogen peroxide in cell signaling. Curr. Opin. Chem. Biol. 11, 620–625 (2007)CrossRef E.W. Miller, C.J. Chang, Fluorescent probes for nitric oxide and hydrogen peroxide in cell signaling. Curr. Opin. Chem. Biol. 11, 620–625 (2007)CrossRef
94.
Zurück zum Zitat D. Srikun, A.E. Albers, C.I. Nam, A.T. Iavarone, C.J. Chang, Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling. J. Am. Chem. Soc. 132, 4455–4465 (2010)CrossRef D. Srikun, A.E. Albers, C.I. Nam, A.T. Iavarone, C.J. Chang, Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling. J. Am. Chem. Soc. 132, 4455–4465 (2010)CrossRef
95.
Zurück zum Zitat B.C. Dickinson, C.J. Chang, A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. 130, 9638–9639 (2008)CrossRef B.C. Dickinson, C.J. Chang, A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. 130, 9638–9639 (2008)CrossRef
96.
Zurück zum Zitat B. Dickinson, Y. Tang, Z. Chang, C. Chang, A nuclear-localized fluorescent hydrogen peroxide probe for monitoring sirtuin-mediated oxidative stress responses invivo. Chem. Biol. 18, 943–948 (2011)CrossRef B. Dickinson, Y. Tang, Z. Chang, C. Chang, A nuclear-localized fluorescent hydrogen peroxide probe for monitoring sirtuin-mediated oxidative stress responses invivo. Chem. Biol. 18, 943–948 (2011)CrossRef
97.
Zurück zum Zitat D. Kim, G. Kim, S.-J. Nam, J. Yin, J. Yoon, Visualization of endogenous and exogenous hydrogen peroxide using a lysosome-targetable fluorescent probe. Sci. Rep. 5 (2015) D. Kim, G. Kim, S.-J. Nam, J. Yin, J. Yoon, Visualization of endogenous and exogenous hydrogen peroxide using a lysosome-targetable fluorescent probe. Sci. Rep. 5 (2015)
98.
Zurück zum Zitat A. Sikora, J. Zielonka, M. Lopez, J. Joseph, B. Kalyanaraman, Direct oxidation of boronates by peroxynitrite: mechanism and implications in fluorescence imaging of peroxynitrite. Free Radic. Biol. Med. 47, 1401–1407 (2009)CrossRef A. Sikora, J. Zielonka, M. Lopez, J. Joseph, B. Kalyanaraman, Direct oxidation of boronates by peroxynitrite: mechanism and implications in fluorescence imaging of peroxynitrite. Free Radic. Biol. Med. 47, 1401–1407 (2009)CrossRef
99.
Zurück zum Zitat H. Maeda, Y. Fukuyasu, S. Yoshida, M. Fukuda, K. Saeki, H. Matsuno, Y. Yamauchi, K. Yoshida, K. Hirata, K. Miyamoto, Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism. Angew. Chem. Int. Ed. 43, 2389–2391 (2004)CrossRef H. Maeda, Y. Fukuyasu, S. Yoshida, M. Fukuda, K. Saeki, H. Matsuno, Y. Yamauchi, K. Yoshida, K. Hirata, K. Miyamoto, Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism. Angew. Chem. Int. Ed. 43, 2389–2391 (2004)CrossRef
100.
Zurück zum Zitat M. Abo, Y. Urano, K. Hanaoka, T. Terai, T. Komatsu, T. Nagano, Development of a highly sensitive fluorescence probe for hydrogen peroxide. J. Am. Chem. Soc. 133, 10629–10637 (2011)CrossRef M. Abo, Y. Urano, K. Hanaoka, T. Terai, T. Komatsu, T. Nagano, Development of a highly sensitive fluorescence probe for hydrogen peroxide. J. Am. Chem. Soc. 133, 10629–10637 (2011)CrossRef
101.
Zurück zum Zitat S. Kenmoku, Y. Urano, H. Kojima, T. Nagano, Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J. Am. Chem. Soc. 129, 7313–7318 (2007)CrossRef S. Kenmoku, Y. Urano, H. Kojima, T. Nagano, Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J. Am. Chem. Soc. 129, 7313–7318 (2007)CrossRef
102.
Zurück zum Zitat X. Chen, K.-A. Lee, E.-M. Ha, K.M. Lee, Y.Y. Seo, H.K. Choi, H.N. Kim, M.J. Kim, C.-S. Cho, S.Y. Lee, W.-J. Lee, J. Yoon, A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production. Chem. Commun. 47, 4373–4375 (2011)CrossRef X. Chen, K.-A. Lee, E.-M. Ha, K.M. Lee, Y.Y. Seo, H.K. Choi, H.N. Kim, M.J. Kim, C.-S. Cho, S.Y. Lee, W.-J. Lee, J. Yoon, A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production. Chem. Commun. 47, 4373–4375 (2011)CrossRef
103.
Zurück zum Zitat W. Lin, L. Long, B. Chen, W. Tan, A ratiometric fluorescent probe for hypochlorite based on a deoximation reaction. Chemistry: Eur. J. 15, 2305–2309 (2009) W. Lin, L. Long, B. Chen, W. Tan, A ratiometric fluorescent probe for hypochlorite based on a deoximation reaction. Chemistry: Eur. J. 15, 2305–2309 (2009)
104.
Zurück zum Zitat H. Kojima, N. Nakatsubo, K. Kikuchi, S. Kawahara, Y. Kirino, H. Nagoshi, Y. Hirata, T. Nagano, Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70, 2446–2453 (1998)CrossRef H. Kojima, N. Nakatsubo, K. Kikuchi, S. Kawahara, Y. Kirino, H. Nagoshi, Y. Hirata, T. Nagano, Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70, 2446–2453 (1998)CrossRef
105.
Zurück zum Zitat M.H. Lim, B.A. Wong, W.H. Pitcock, D. Mokshagundam, M.-H. Baik, S.J. Lippard, Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes. J. Am. Chem. Soc. 128, 14364–14373 (2006)CrossRef M.H. Lim, B.A. Wong, W.H. Pitcock, D. Mokshagundam, M.-H. Baik, S.J. Lippard, Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes. J. Am. Chem. Soc. 128, 14364–14373 (2006)CrossRef
106.
Zurück zum Zitat M.H. Lim, D. Xu, S.J. Lippard, Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nat. Chem. Biol. 2, 375–380 (2006)CrossRef M.H. Lim, D. Xu, S.J. Lippard, Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nat. Chem. Biol. 2, 375–380 (2006)CrossRef
107.
Zurück zum Zitat Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, T. Nagano, Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophorerational design of potentially useful bioimaging fluorescence probe. J. Am. Chem. Soc. 126, 3357–3367 (2004)CrossRef Y. Gabe, Y. Urano, K. Kikuchi, H. Kojima, T. Nagano, Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophorerational design of potentially useful bioimaging fluorescence probe. J. Am. Chem. Soc. 126, 3357–3367 (2004)CrossRef
108.
Zurück zum Zitat S. Izumi, Y. Urano, K. Hanaoka, T. Terai, T. Nagano, A simple and effective strategy to increase the sensitivity of fluorescence probes in living cells. J. Am. Chem. Soc. 131, 10189–10200 (2009)CrossRef S. Izumi, Y. Urano, K. Hanaoka, T. Terai, T. Nagano, A simple and effective strategy to increase the sensitivity of fluorescence probes in living cells. J. Am. Chem. Soc. 131, 10189–10200 (2009)CrossRef
109.
Zurück zum Zitat H. Kojima, M. Hirotani, N. Nakatsubo, K. Kikuchi, Y. Urano, T. Higuchi, Y. Hirata, T. Nagano, Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal. Chem. 73, 1967–1973 (2001)CrossRef H. Kojima, M. Hirotani, N. Nakatsubo, K. Kikuchi, Y. Urano, T. Higuchi, Y. Hirata, T. Nagano, Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal. Chem. 73, 1967–1973 (2001)CrossRef
110.
Zurück zum Zitat H. Kojima, Y. Urano, K. Kikuchi, T. Higuchi, Y. Hirata, T. Nagano, Fluorescent indicators for imaging nitric oxide production. Angew. Chem. Int. Ed. Engl. 38, 3209–3212 (1999)CrossRef H. Kojima, Y. Urano, K. Kikuchi, T. Higuchi, Y. Hirata, T. Nagano, Fluorescent indicators for imaging nitric oxide production. Angew. Chem. Int. Ed. Engl. 38, 3209–3212 (1999)CrossRef
111.
Zurück zum Zitat M.J. Plater, I. Greig, M.H. Helfrich, S.H. Ralston, The synthesis and evaluation of o-phenylenediamine derivatives as fluorescent probes for nitric oxide detection. J. Chem. Soc. Perkin Trans. 1, 2553–2559 (2001)CrossRef M.J. Plater, I. Greig, M.H. Helfrich, S.H. Ralston, The synthesis and evaluation of o-phenylenediamine derivatives as fluorescent probes for nitric oxide detection. J. Chem. Soc. Perkin Trans. 1, 2553–2559 (2001)CrossRef
112.
Zurück zum Zitat E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi, Y. Hirata, T. Nagano, Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J. Am. Chem. Soc. 127, 3684–3685 (2005)CrossRef E. Sasaki, H. Kojima, H. Nishimatsu, Y. Urano, K. Kikuchi, Y. Hirata, T. Nagano, Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. J. Am. Chem. Soc. 127, 3684–3685 (2005)CrossRef
113.
Zurück zum Zitat D. Yang, H.-L. Wang, Z.-N. Sun, N.-W. Chung, J.-G. Shen, A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells. J. Am. Chem. Soc. 128, 6004–6005 (2006)CrossRef D. Yang, H.-L. Wang, Z.-N. Sun, N.-W. Chung, J.-G. Shen, A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells. J. Am. Chem. Soc. 128, 6004–6005 (2006)CrossRef
114.
Zurück zum Zitat T. Peng, D. Yang, HKGreen-3: a rhodol-based fluorescent probe for peroxynitrite. Org. Lett. 12, 4932–4935 (2010)CrossRef T. Peng, D. Yang, HKGreen-3: a rhodol-based fluorescent probe for peroxynitrite. Org. Lett. 12, 4932–4935 (2010)CrossRef
115.
Zurück zum Zitat Z.-N. Sun, H.-L. Wang, F.-Q. Liu, Y. Chen, P.K.H. Tam, D. Yang, BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells. Org. Lett. 11, 1887–1890 (2009)CrossRef Z.-N. Sun, H.-L. Wang, F.-Q. Liu, Y. Chen, P.K.H. Tam, D. Yang, BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells. Org. Lett. 11, 1887–1890 (2009)CrossRef
116.
Zurück zum Zitat T. Ueno, Y. Urano, H. Kojima, T. Nagano, Mechanism-based molecular design of highly selective fluorescence probes for nitrative stress. J. Am. Chem. Soc. 128, 10640–10641 (2006)CrossRef T. Ueno, Y. Urano, H. Kojima, T. Nagano, Mechanism-based molecular design of highly selective fluorescence probes for nitrative stress. J. Am. Chem. Soc. 128, 10640–10641 (2006)CrossRef
117.
Zurück zum Zitat H. Zhao, S. Kalivendi, H. Zhang, J. Joseph, K. Nithipatikom, J. Vasquez-Vivar, B. Kalyanaraman, Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic. Biol. Med. 34, 1359–1368 (2003)CrossRef H. Zhao, S. Kalivendi, H. Zhang, J. Joseph, K. Nithipatikom, J. Vasquez-Vivar, B. Kalyanaraman, Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic. Biol. Med. 34, 1359–1368 (2003)CrossRef
118.
Zurück zum Zitat C.D. Georgiou, I. Papapostolou, N. Patsoukis, T. Tsegenidis, T. Sideris, An ultrasensitive fluorescent assay for the in vivo quantification of superoxide radical in organisms. Anal. Biochem. 347, 144–151 (2005)CrossRef C.D. Georgiou, I. Papapostolou, N. Patsoukis, T. Tsegenidis, T. Sideris, An ultrasensitive fluorescent assay for the in vivo quantification of superoxide radical in organisms. Anal. Biochem. 347, 144–151 (2005)CrossRef
119.
Zurück zum Zitat B. Tang, L. Zhang, L.-L. Zhang, Study and application of flow injection spectrofluorimetry with a fluorescent probe of 2-(2-pyridil)-benzothiazoline for superoxide anion radicals. Anal. Biochem. 326, 176–82 (2004)CrossRef B. Tang, L. Zhang, L.-L. Zhang, Study and application of flow injection spectrofluorimetry with a fluorescent probe of 2-(2-pyridil)-benzothiazoline for superoxide anion radicals. Anal. Biochem. 326, 176–82 (2004)CrossRef
120.
Zurück zum Zitat H. Maeda, K. Yamamoto, Y. Nomura, I. Kohno, L. Hafsi, N. Ueda, S. Yoshida, M. Fukuda, Y. Fukuyasu, Y. Yamauchi, N. Itoh, A design of fluorescent probes for superoxide based on a nonredox mechanism. J. Am. Chem. Soc. 127, 68–69 (2005)CrossRef H. Maeda, K. Yamamoto, Y. Nomura, I. Kohno, L. Hafsi, N. Ueda, S. Yoshida, M. Fukuda, Y. Fukuyasu, Y. Yamauchi, N. Itoh, A design of fluorescent probes for superoxide based on a nonredox mechanism. J. Am. Chem. Soc. 127, 68–69 (2005)CrossRef
121.
Zurück zum Zitat H. Maeda, K. Yamamoto, I. Kohno, L. Hafsi, N. Itoh, S. Nakagawa, N. Kanagawa, K. Suzuki, T. Uno, Design of a practical fluorescent probe for superoxide based on protection-deprotection chemistry of fluoresceins with benzenesulfonyl protecting groups. Chemistry (Weinheim an der Bergstrasse, Germany) 13, 1946–1954 (2007) H. Maeda, K. Yamamoto, I. Kohno, L. Hafsi, N. Itoh, S. Nakagawa, N. Kanagawa, K. Suzuki, T. Uno, Design of a practical fluorescent probe for superoxide based on protection-deprotection chemistry of fluoresceins with benzenesulfonyl protecting groups. Chemistry (Weinheim an der Bergstrasse, Germany) 13, 1946–1954 (2007)
122.
Zurück zum Zitat D.J. Kieber, N.V. Blough, Determination of carbon-centered radicals in aqueous solution by liquid chromatography with fluorescence detection. Anal. Chem. 62, 2275–2283 (1990)CrossRef D.J. Kieber, N.V. Blough, Determination of carbon-centered radicals in aqueous solution by liquid chromatography with fluorescence detection. Anal. Chem. 62, 2275–2283 (1990)CrossRef
123.
Zurück zum Zitat N.V. Blough, D.J. Simpson, Chemically mediated fluorescence yield switching in nitroxide-fluorophore adducts: optical sensors of radical/redox reactions. J. Am. Chem. Soc. 110, 1915–1917 (1988)CrossRef N.V. Blough, D.J. Simpson, Chemically mediated fluorescence yield switching in nitroxide-fluorophore adducts: optical sensors of radical/redox reactions. J. Am. Chem. Soc. 110, 1915–1917 (1988)CrossRef
124.
Zurück zum Zitat S. Pou, Y.I. Huang, A. Bhan, V.S. Bhadti, R.S. Hosmane, S.Y. Wu, G.L. Cao, G.M. Rosen, A fluorophore-containing nitroxide as a probe to detect superoxide and hydroxyl radical generated by stimulated neutrophils. Anal. Biochem. 212, 85–90 (1993)CrossRef S. Pou, Y.I. Huang, A. Bhan, V.S. Bhadti, R.S. Hosmane, S.Y. Wu, G.L. Cao, G.M. Rosen, A fluorophore-containing nitroxide as a probe to detect superoxide and hydroxyl radical generated by stimulated neutrophils. Anal. Biochem. 212, 85–90 (1993)CrossRef
125.
Zurück zum Zitat P. Li, T. Xie, X. Duan, F. Yu, X. Wang, B. Tang, A new highly selective and sensitive assay for fluorescence imaging of *OH in living cells: effectively avoiding the interference of peroxynitrite. Chemistry (Weinheim an der Bergstrasse, Germany) 16, 1834–1840 (2010) P. Li, T. Xie, X. Duan, F. Yu, X. Wang, B. Tang, A new highly selective and sensitive assay for fluorescence imaging of *OH in living cells: effectively avoiding the interference of peroxynitrite. Chemistry (Weinheim an der Bergstrasse, Germany) 16, 1834–1840 (2010)
126.
Zurück zum Zitat K. Tanaka, N. Umezawa, K. Kikuchi, Y. Urano, T. Higuchi, Novel fluorescent probes for singlet oxygen. Angew. Chem. Int. Ed. Engl. 38, 2899–2901 (1999)CrossRef K. Tanaka, N. Umezawa, K. Kikuchi, Y. Urano, T. Higuchi, Novel fluorescent probes for singlet oxygen. Angew. Chem. Int. Ed. Engl. 38, 2899–2901 (1999)CrossRef
127.
Zurück zum Zitat K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, T. Nagano, Rational design of fluorescein-based fluorescence probes mechanism-based design of a maximum fluorescence probe for singlet oxygen. J. Am. Chem. Soc. 123, 2530–2536 (2001)CrossRef K. Tanaka, T. Miura, N. Umezawa, Y. Urano, K. Kikuchi, T. Higuchi, T. Nagano, Rational design of fluorescein-based fluorescence probes mechanism-based design of a maximum fluorescence probe for singlet oxygen. J. Am. Chem. Soc. 123, 2530–2536 (2001)CrossRef
128.
Zurück zum Zitat V.V. Belousov, A.F. Fradkov, K.A. Lukyanov, D.B. Staroverov, K.S. Shakhbazov, A.V. Terskikh, S. Lukyanov, Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Meth. 3, 281–286 (2006)CrossRef V.V. Belousov, A.F. Fradkov, K.A. Lukyanov, D.B. Staroverov, K.S. Shakhbazov, A.V. Terskikh, S. Lukyanov, Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Meth. 3, 281–286 (2006)CrossRef
129.
Zurück zum Zitat A.J. Meyer, T.P. Dick, Fluorescent protein-based redox probes. Antioxid. Redox Signal. 13, 621–650 (2010)CrossRef A.J. Meyer, T.P. Dick, Fluorescent protein-based redox probes. Antioxid. Redox Signal. 13, 621–650 (2010)CrossRef
130.
Zurück zum Zitat S.A. Green, D.J. Simpson, G. Zhou, P.S. Ho, N.V. Blough, Intramolecular quenching of excited singlet states by stable nitroxyl radicals. J. Am. Chem. Soc. 112, 7337–7346 (1990)CrossRef S.A. Green, D.J. Simpson, G. Zhou, P.S. Ho, N.V. Blough, Intramolecular quenching of excited singlet states by stable nitroxyl radicals. J. Am. Chem. Soc. 112, 7337–7346 (1990)CrossRef
131.
Zurück zum Zitat E. Lozinsky, V.V. Martin, T.A. Berezina, A.I. Shames, A.L. Weis, G.I. Likhtenshtein, Dual fluorophore-nitroxide probes for analysis of vitamin C in biological liquids. J. Biochem. Biophys. Methods 38, 29–42 (1999)CrossRef E. Lozinsky, V.V. Martin, T.A. Berezina, A.I. Shames, A.L. Weis, G.I. Likhtenshtein, Dual fluorophore-nitroxide probes for analysis of vitamin C in biological liquids. J. Biochem. Biophys. Methods 38, 29–42 (1999)CrossRef
132.
Zurück zum Zitat B.J. Morrow, D.J. Keddie, N. Gueven, M.F. Lavin, S.E. Bottle, A novel profluorescent nitroxide as a sensitive probe for the cellular redox environment. Free Radic. Biol. Med. 49, 67–76 (2010)CrossRef B.J. Morrow, D.J. Keddie, N. Gueven, M.F. Lavin, S.E. Bottle, A novel profluorescent nitroxide as a sensitive probe for the cellular redox environment. Free Radic. Biol. Med. 49, 67–76 (2010)CrossRef
133.
Zurück zum Zitat F. Yu, P. Song, P. Li, B. Wang, K. Han, Development of reversible fluorescence probes based on redox oxoammonium cation for hypobromous acid detection in living cells. Chem. Commun. 48, 7735–7737 (2012)CrossRef F. Yu, P. Song, P. Li, B. Wang, K. Han, Development of reversible fluorescence probes based on redox oxoammonium cation for hypobromous acid detection in living cells. Chem. Commun. 48, 7735–7737 (2012)CrossRef
134.
Zurück zum Zitat Y. Liu, S. Liu, Y. Wang, TEMPO-based redox-sensitive fluorescent probes and their applications to evaluating intracellular redox status in living cells. Chem. Lett. 38, 588–589 (2009)CrossRef Y. Liu, S. Liu, Y. Wang, TEMPO-based redox-sensitive fluorescent probes and their applications to evaluating intracellular redox status in living cells. Chem. Lett. 38, 588–589 (2009)CrossRef
135.
Zurück zum Zitat H.-Y. Ahn, K.E. Fairfull-Smith, B.J. Morrow, V. Lussini, B. Kim, M.V. Bondar, S.E. Bottle, K.D. Belfield, Two-photon fluorescence microscopy imaging of cellular oxidative stress using profluorescent nitroxides. J. Am. Chem. Soc. 134, 4721–4730 (2012)CrossRef H.-Y. Ahn, K.E. Fairfull-Smith, B.J. Morrow, V. Lussini, B. Kim, M.V. Bondar, S.E. Bottle, K.D. Belfield, Two-photon fluorescence microscopy imaging of cellular oxidative stress using profluorescent nitroxides. J. Am. Chem. Soc. 134, 4721–4730 (2012)CrossRef
136.
Zurück zum Zitat L.F. Fieser, The tautomerism of hydroxy quinones. J. Am. Chem. Soc. 50, 439–465 (1928)CrossRef L.F. Fieser, The tautomerism of hydroxy quinones. J. Am. Chem. Soc. 50, 439–465 (1928)CrossRef
137.
Zurück zum Zitat D. Gust, T. Moore, Photosynthetic model systems, in Photoinduced Electron Transfer III, ed. by J. Mattay, vol. 159, Chap. 3, (Springer, Berlin, 1991), pp. 103–151 D. Gust, T. Moore, Photosynthetic model systems, in Photoinduced Electron Transfer III, ed. by J. Mattay, vol. 159, Chap. 3, (Springer, Berlin, 1991), pp. 103–151
138.
Zurück zum Zitat M.R. Wasielewski, Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 92, 435–461 (1992)CrossRef M.R. Wasielewski, Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 92, 435–461 (1992)CrossRef
139.
Zurück zum Zitat V. Goulle, A. Harriman, J.-M. Lehn, An electro-photoswitch: redox switching of the luminescence of a bipyridine metal complex. J. Chem. Soc. Chem. Commun., 1034–1036 (1993) V. Goulle, A. Harriman, J.-M. Lehn, An electro-photoswitch: redox switching of the luminescence of a bipyridine metal complex. J. Chem. Soc. Chem. Commun., 1034–1036 (1993)
140.
Zurück zum Zitat F. Yu, P. Li, P. Song, B. Wang, J. Zhao, K. Han, Facilitative functionalization of cyanine dye by an on-off-on fluorescent switch for imaging of H2O2 oxidative stress and thiols reducing repair in cells and tissues. Chem. Commun. 48, 4980–4982 (2012)CrossRef F. Yu, P. Li, P. Song, B. Wang, J. Zhao, K. Han, Facilitative functionalization of cyanine dye by an on-off-on fluorescent switch for imaging of H2O2 oxidative stress and thiols reducing repair in cells and tissues. Chem. Commun. 48, 4980–4982 (2012)CrossRef
141.
Zurück zum Zitat W. Zhang, X. Wang, P. Li, F. Huang, H. Wang, W. Zhang, B. Tang, Elucidating the relationship between superoxide anion levels and lifespan using an enhanced two-photon fluorescence imaging probe. Chem. Commun. 51, 9710–9713 (2015)CrossRef W. Zhang, X. Wang, P. Li, F. Huang, H. Wang, W. Zhang, B. Tang, Elucidating the relationship between superoxide anion levels and lifespan using an enhanced two-photon fluorescence imaging probe. Chem. Commun. 51, 9710–9713 (2015)CrossRef
142.
Zurück zum Zitat A.C. Benniston, G.M. Chapman, A. Harriman, S.A. Rostron, Reversible luminescence switching in a Ruthenium(II) Bis(2,2:6,2-terpyridine)-Benzoquinone Dyad. Inorg. Chem. 44, 4029–4036 (2005)CrossRef A.C. Benniston, G.M. Chapman, A. Harriman, S.A. Rostron, Reversible luminescence switching in a Ruthenium(II) Bis(2,2:6,2-terpyridine)-Benzoquinone Dyad. Inorg. Chem. 44, 4029–4036 (2005)CrossRef
143.
Zurück zum Zitat Y.-X. Yuan, Y. Chen, Y.-C. Wang, C.-Y. Su, S.-M. Liang, H. Chao, L.-N. Ji, Redox responsive luminescent switch based on a ruthenium(II) complex Ru(bpy)(2)(PAIDH) (2+). Inorg. Chem. Commun. 11, 1048–1050 (2008)CrossRef Y.-X. Yuan, Y. Chen, Y.-C. Wang, C.-Y. Su, S.-M. Liang, H. Chao, L.-N. Ji, Redox responsive luminescent switch based on a ruthenium(II) complex Ru(bpy)(2)(PAIDH) (2+). Inorg. Chem. Commun. 11, 1048–1050 (2008)CrossRef
144.
Zurück zum Zitat B. Palmieri, V. Sblendorio, Current status of measuring oxidative stress, in Advanced Protocols in Oxidative Stress II , ed. by D. Armstrong, vol. 594, Chap. 1 (Humana Press, 2010), pp. 3–17 B. Palmieri, V. Sblendorio, Current status of measuring oxidative stress, in Advanced Protocols in Oxidative Stress II , ed. by D. Armstrong, vol. 594, Chap. 1 (Humana Press, 2010), pp. 3–17
145.
Zurück zum Zitat J.T. Rotruck, A.L. Pope, H.E. Ganther, A.B. Swanson, D.G. Hafeman, W.G. Hoekstra, Selenium: biochemical role as a component of glutathione peroxidase. Nutr. Rev. 38, 280–283 (1980)CrossRef J.T. Rotruck, A.L. Pope, H.E. Ganther, A.B. Swanson, D.G. Hafeman, W.G. Hoekstra, Selenium: biochemical role as a component of glutathione peroxidase. Nutr. Rev. 38, 280–283 (1980)CrossRef
146.
Zurück zum Zitat K. Lee, V. Dzubeck, L. Latshaw, J.P. Schneider, De Novo designed peptidic redox potential probe: linking sensitized emission to disulfide bond formation. J. Am. Chem. Soc. 126, 13616–13617 (2004)CrossRef K. Lee, V. Dzubeck, L. Latshaw, J.P. Schneider, De Novo designed peptidic redox potential probe: linking sensitized emission to disulfide bond formation. J. Am. Chem. Soc. 126, 13616–13617 (2004)CrossRef
147.
Zurück zum Zitat K. Xu, M. Qiang, W. Gao, R. Su, N. Li, Y. Gao, Y. Xie, F. Kong, B. Tang, A near-infrared reversible fluorescent probe for real-time imaging of redox status changes in vivo. Chem. Sci. 4, 1079–1086 (2013)CrossRef K. Xu, M. Qiang, W. Gao, R. Su, N. Li, Y. Gao, Y. Xie, F. Kong, B. Tang, A near-infrared reversible fluorescent probe for real-time imaging of redox status changes in vivo. Chem. Sci. 4, 1079–1086 (2013)CrossRef
148.
Zurück zum Zitat F. Yu, P. Li, G. Li, G. Zhao, T. Chu, K. Han, A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. J. Am. Chem. Soc. 133, 11030–11033 (2011)CrossRef F. Yu, P. Li, G. Li, G. Zhao, T. Chu, K. Han, A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. J. Am. Chem. Soc. 133, 11030–11033 (2011)CrossRef
149.
Zurück zum Zitat Y. Koide, M. Kawaguchi, Y. Urano, K. Hanaoka, T. Komatsu, M. Abo, T. Terai, T. Nagano, A reversible near-infrared fluorescence probe for reactive oxygen species based on Te-rhodamine. Chem. Commun. 48, 3091–3093 (2012)CrossRef Y. Koide, M. Kawaguchi, Y. Urano, K. Hanaoka, T. Komatsu, M. Abo, T. Terai, T. Nagano, A reversible near-infrared fluorescence probe for reactive oxygen species based on Te-rhodamine. Chem. Commun. 48, 3091–3093 (2012)CrossRef
150.
Zurück zum Zitat F. Liu, Y. Gao, J. Wang, S. Sun, Reversible and selective luminescent determination of ClO-/H2S redox cycle in vitro and in vivo based on a ruthenium trisbipyridyl probe. Analyst 139, 3324–3329 (2014)CrossRef F. Liu, Y. Gao, J. Wang, S. Sun, Reversible and selective luminescent determination of ClO-/H2S redox cycle in vitro and in vivo based on a ruthenium trisbipyridyl probe. Analyst 139, 3324–3329 (2014)CrossRef
151.
Zurück zum Zitat B. Wang, P. Li, F. Yu, J. Chen, Z. Qu, K. Han, A near-infrared reversible and ratiometric fluorescent probe based on Se-BODIPY for the redox cycle mediated by hypobromous acid and hydrogen sulfide in living cells. Chem. Commun. 49, 5790–5792 (2013)CrossRef B. Wang, P. Li, F. Yu, J. Chen, Z. Qu, K. Han, A near-infrared reversible and ratiometric fluorescent probe based on Se-BODIPY for the redox cycle mediated by hypobromous acid and hydrogen sulfide in living cells. Chem. Commun. 49, 5790–5792 (2013)CrossRef
152.
Zurück zum Zitat S.-R. Liu, S.-P. Wu, Hypochlorous acid turn-on fluorescent probe based on oxidation of diphenyl selenide. Org. Lett. 15, 878–881 (2013)CrossRef S.-R. Liu, S.-P. Wu, Hypochlorous acid turn-on fluorescent probe based on oxidation of diphenyl selenide. Org. Lett. 15, 878–881 (2013)CrossRef
153.
Zurück zum Zitat Z. Lou, P. Li, Q. Pan, K. Han, A reversible fluorescent probe for detecting hypochloric acid in living cells and animals: utilizing a novel strategy for effectively modulating the fluorescence of selenide and selenoxide. Chem. Commun. 49, 2445–2447 (2013)CrossRef Z. Lou, P. Li, Q. Pan, K. Han, A reversible fluorescent probe for detecting hypochloric acid in living cells and animals: utilizing a novel strategy for effectively modulating the fluorescence of selenide and selenoxide. Chem. Commun. 49, 2445–2447 (2013)CrossRef
154.
Zurück zum Zitat P. Yan, M.W. Holman, P. Robustelli, A. Chowdhury, F.I. Ishak, D.M. Adams, Molecular switch based on a biologically important redox reaction. J. Phys. Chem. B 109, 130–137 (2004)CrossRef P. Yan, M.W. Holman, P. Robustelli, A. Chowdhury, F.I. Ishak, D.M. Adams, Molecular switch based on a biologically important redox reaction. J. Phys. Chem. B 109, 130–137 (2004)CrossRef
155.
Zurück zum Zitat Y. Yamada, S. Aoki, Efficient cycloreversion of cis, syn-thymine photodimer by a Zn2+1,4,7,10-tetraazacyclododecane complex bearing a lumiflavin and tryptophan by chemical reduction and photoreduction of a lumiflavin unit. J. Biol. Inorg. Chem. 11, 1007–1023 (2006)CrossRef Y. Yamada, S. Aoki, Efficient cycloreversion of cis, syn-thymine photodimer by a Zn2+1,4,7,10-tetraazacyclododecane complex bearing a lumiflavin and tryptophan by chemical reduction and photoreduction of a lumiflavin unit. J. Biol. Inorg. Chem. 11, 1007–1023 (2006)CrossRef
156.
Zurück zum Zitat Y. Yamada, Y. Tomiyama, A. Morita, M. Ikekita, S. Aoki, BODIPY-based fluorescent redox potential sensors that utilize reversible redox properties of flavin. ChemBioChem 9, 853–856 (2008)CrossRef Y. Yamada, Y. Tomiyama, A. Morita, M. Ikekita, S. Aoki, BODIPY-based fluorescent redox potential sensors that utilize reversible redox properties of flavin. ChemBioChem 9, 853–856 (2008)CrossRef
157.
Zurück zum Zitat J.D. Walsh, A.F. Miller, Flavin reduction potential tuning by substitution and bending. J. Mol. Struct. (Thoechem) 623, 185–195 (2003)CrossRef J.D. Walsh, A.F. Miller, Flavin reduction potential tuning by substitution and bending. J. Mol. Struct. (Thoechem) 623, 185–195 (2003)CrossRef
158.
Zurück zum Zitat C.O. Schmakel, K.S.V. Santhanam, P.J. Elving, Nicotinamide adenine dinucleotide (NAD+) and related compounds. Electrochemical redox pattern and allied chemical behavior. J. Am. Chem. Soc. 97, 5083–5092 (1975)CrossRef C.O. Schmakel, K.S.V. Santhanam, P.J. Elving, Nicotinamide adenine dinucleotide (NAD+) and related compounds. Electrochemical redox pattern and allied chemical behavior. J. Am. Chem. Soc. 97, 5083–5092 (1975)CrossRef
159.
Zurück zum Zitat P. Bourbon, Q. Peng, G. Ferraudi, C. Stauffacher, O. Wiest, P. Helquist, Synthesis, photophysical, photochemical, and computational studies of coumarin-labeled nicotinamide derivatives. J. Organ. Chem. 77, 2756–2762 (2012)CrossRef P. Bourbon, Q. Peng, G. Ferraudi, C. Stauffacher, O. Wiest, P. Helquist, Synthesis, photophysical, photochemical, and computational studies of coumarin-labeled nicotinamide derivatives. J. Organ. Chem. 77, 2756–2762 (2012)CrossRef
Metadaten
Titel
Introduction
verfasst von
Amandeep Kaur
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-73405-7_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.