Skip to main content

GeoGebra as a Tool in Modelling Processes

  • Chapter
  • First Online:

Part of the book series: ICME-13 Monographs ((ICME13Mo))

Abstract

Applying digital technology in mathematical teaching is frequently cited as important and fundamental to the understanding-based learning of mathematical content . In this article, we study the extent to which the systematic application of the dynamic geometry software GeoGebra supports the competency “Mathematical Modelling”. By giving students an application-oriented modelling problem to solve, modelling processes are analysed, assessed, and represented. By observing students at the 10th grade level with respect to a qualitative study hypotheses are formulated about applying a digital tool at different stages of the modelling cycle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arzarello, F., Ferrara, F., & Robutti, O. (2012). Mathematical modelling with technology: The role of dynamic representations. Teaching Mathematics and Its Applications, 31(1), 20–30.

    Article  Google Scholar 

  • Barzel, B. (2012). Computeralgebra im Mathematikunterricht: Ein Mehrwert—Aber wann? Münster: Waxmann.

    Google Scholar 

  • Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In: S. J. Cho (Ed.), The Proceedings of the 12th International Congress on Mathematical Education—Intellectual and Attitudinal Challenges (pp. 73–96). New York: Springer.

    Google Scholar 

  • Blum, W., Drueke-Noe, C., Hartung, R., & Köller, O. (Eds.). (2012). Bildungsstandards Mathematik: konkret. Sekundarstufe I: Aufgabenbeispiele, Unterrichtsanregungen, Fortbildungsideen. Berlin: Cornelsen.

    Google Scholar 

  • Blum, W., & Leiss, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugarloaf and the DISUM project. In C. Haines, P. Galbraith, W. Blum, & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester: Horwood.

    Chapter  Google Scholar 

  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects—State, trends and issues in mathematics instruction. Educational studies in mathematics, 22(1), 37–68.

    Article  Google Scholar 

  • Büchter, A., & Leuders, T. (2005). Mathematikaufgaben selbst entwickeln (pp. 88–102). Berlin: Cornelsen.

    Google Scholar 

  • Carreira, S., Amado, N., & Canário, F. (2013). Students’ modelling of linear functions: How GeoGebra stimulates a geometrical approach. In B. Ubuz et al. (Eds.), CERME 8. Proceedings of the 8th Congress of the European Society of Research in Mathematics Education (pp. 1031–1040). Antalya, Turkey, Ankara: Middle East Technical University.

    Google Scholar 

  • Confrey, J., & Maloney, A. (2007). A theory of mathematical modelling in technological settings. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 57–68). New York: Springer.

    Google Scholar 

  • Daher, W., & Shahbari, A. (2015). Pre-service teachers’ modelling processes through engagement with model eliciting activities with a technological tool. International Journal of Science and Mathematics Education, 13(Suppl 1), 25–46.

    Article  Google Scholar 

  • Fahlgren, M., & Brunström, M. (2014). A model for task design with focus on exploration, explanation, and generalization in a dynamic geometry environment. Technology, Knowledge and Learning, 19, 287–315.

    Article  Google Scholar 

  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 143–162.

    Article  Google Scholar 

  • Gallegos, R. R., & Rivera, S. Q. (2015). Developing modelling competencies through the use of technology. In G. A. Stillman et al. (Eds.), Mathematical modelling in education research and practice. Cham/Switzerland: Springer.

    Google Scholar 

  • Geiger, V. (2011). Factors affecting teachers’ adoption of innovative practices with technology and mathematical modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 305–314). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hall, J., & Lingefjärd, T. (2016). Mathematical modeling—Applications with GeoGebra. Hoboken, New Jersey: Wiley.

    Google Scholar 

  • Hohenwarter, M., Hohenwarter, J., Kreis, Y., & Lavicza, Z. (2008). Teaching and learning calculus with free dynamic mathematics software GeoGebra. In TSG 16: Research and development in the teaching and learning of calculus ICME 11, Monterrey, Mexico 2008. https://archive.geogebra.org/static/publications/2008-ICME-TSG16-Calculus-GeoGebra-Paper.pdf.

  • KMK. (2015). Bildungsstandards im Fach Mathematik für die Allgemeine Hochschulreife. Bonn und Berlin: Wolters Kluwer.

    Google Scholar 

  • Laakmann, H. (2005). Die Piratenaufgabe—Verschieden darstellen, verschieden bearbeiten. In B. Barzel, S. Hussmann, & T. Leuders (Eds.), Computer, Internet & Co. im Mathematikunterricht (pp. 85–94). Berlin: Cornelsen Scriptor.

    Google Scholar 

  • Moreno-Armella, L., Hegedus, S., & Kaput, J. (2008). From static to dynamic mathematics: Historical and representational perspectives. Educational Studies in Mathematics, 68, 99–111.

    Article  Google Scholar 

  • Monaghan, J., Trouche, L., & Borwein, J. (2016). Tools and mathematics: Instruments for learning. New York: Springer.

    Book  Google Scholar 

  • Pead, D., Bill, R., & Muller, E. (2007). Uses of technologies in learning mathematics through modelling. In W. Blum et al. (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 309–318). New York: Springer.

    Google Scholar 

  • Riebel, J. (2010). Modellierungskompetenzen beim mathematischen Problemlösen—Inventarisierung von Modellierungsprozessen beim Lösen mathematischer Textaufgaben und Entwicklung eines diagnostischen Instrumentariums. Dissertation, Universität Koblenz-Landau, Fachbereich Psychologie, Landau.

    Google Scholar 

  • Rögler, P. (2014). Überzeugungen von Mathematiklehrkräften als Basis zur Entwicklung von Lehrerfortbildung zu Technologien im Unterricht. Beiträge zum Mathematikunterricht (pp. 983–986). WTM: Münster.

    Google Scholar 

  • Siller, H.-St., & Greefrath, G. (2010). Mathematical modelling in class regarding to technology. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the 6th Congress of the European Society for Research in Mathematics Education (CERME 6), January 28–February 1, 2009, Lyon (France).

    Google Scholar 

  • Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques. Thousand Oaks/California: Sage.

    Google Scholar 

  • Vehring, J. (2012). Mathematische Modellierung mit einer dynamischen Geometriesoftware. Eine empirische Untersuchung anhand der Piratenaufgabe. master thesis, University of Münster.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Greefrath .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greefrath, G., Siller, HS. (2018). GeoGebra as a Tool in Modelling Processes. In: Ball, L., Drijvers, P., Ladel, S., Siller, HS., Tabach, M., Vale, C. (eds) Uses of Technology in Primary and Secondary Mathematics Education. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-76575-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76575-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76574-7

  • Online ISBN: 978-3-319-76575-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics