Skip to main content

Scalable Detection of Viral Memes from Diffusion Patterns

  • Chapter
  • First Online:
Complex Spreading Phenomena in Social Systems

Part of the book series: Computational Social Sciences ((CSS))

Abstract

Social media and social networking platforms have flourished with the rapid development of mobile technology and the ubiquitous use of the Internet. As a result, memes, or pieces of information spreading from person to person, can be reshared among users quickly and gain huge popularity. As viral memes have tremendous social and economic impact, detecting these viral memes at their early stages of spread is a worthy, yet challenging problem. Here we review the literature on predicting viral memes, and present empirical results from Twitter and Tumblr datasets. We demonstrate how diffusion patterns of memes, in the context of network communities, play an important role in predicting virality. We show that it is feasible to obtain predictive features based on community structure even at the massive scales that common social media services need to process. Our results may not only enable practitioners to make predictions about meme diffusion, but also help researchers understand how and why different factors, in particular diffusion patterns in communities, affect online virality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dawkins R (1989) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  2. Daley DJ, Kendall DG (1964) Epidemics and rumours. Nature 204(4963):1118

    Article  ADS  Google Scholar 

  3. Goffman W, Newill VA (1964) Generalization of epidemic theory: an application to the transmission of ideas. Nature 204:225–228

    Article  ADS  Google Scholar 

  4. Weng L, Menczer F, Ahn Y-Y (2013) Virality prediction and community structure in social networks. Sci Rep 3:2522

    Google Scholar 

  5. Weng L, Menczer F, Ahn Y-Y (2014) Predicting successful memes using network and community structure. In: Proceedings of eighth international AAAI conference on weblogs and social media (ICWSM)

    Google Scholar 

  6. Cheng J, Adamic L, Dow A, Kleinberg J, Leskovec J (2014) Can cascades be predicted? In: Proceedings of the international world-wide web conference (WWW)

    Google Scholar 

  7. Jamali S, Rangwala H (2009) Digging digg: comment mining, popularity prediction, and social network analysis. In: Proceedings of the international conference on web information systems and mining (WISM), pp 32–38

    Google Scholar 

  8. Asur S, Huberman BA, Szabo G, Wang C (2011) Trends in social media: persistence and decay. In: Proceedings of the international conference on weblogs and social media (ICWSM)

    Google Scholar 

  9. Yang J, Leskovec J (2011), Patterns of temporal variation in online media. In: Proceedings of the ACM international conference on web search and data mining (WSDM), pp 177–186

    Google Scholar 

  10. Nikolov S (2012), Trend or no trend: a novel nonparametric method for classifying time series. Technical report. MIT, Cambridge

    Google Scholar 

  11. Berger J, Milkman KL (2009), What makes online content viral? J Market Res 49(2):192–205

    Google Scholar 

  12. Guerini M, Strapparava C, Özbal G (2011) Exploring text virality in social networks. In: Proceedings of the AAAI international conference on weblogs and social media (ICWSM), pp 506–509

    Google Scholar 

  13. Weng L, Flammini A, Vespignani A, Menczer F (2012) Competition among memes in a world with limited attention. Sci Rep 2:335

    Google Scholar 

  14. Salganik M, Dodds P, Watts D (2006) Experimental study of inequality and unpredictability in an artificial cultural market. Science 311(5762):854–856

    Article  ADS  Google Scholar 

  15. Muchnik L, Aral S, Taylor SJ (2013) Social influence bias: a randomized experiment. Science 341(6146):647–651

    Article  ADS  Google Scholar 

  16. Yang L, Sun T, Mei Q (2012) We know what @you #tag: does the dual role affect hashtag adoption? In: Proceedings of the international world-wide web conference (WWW), pp 261–270

    Google Scholar 

  17. Cha M, Haddadi H, Benevenuto F, Gummadi KP (2010) Measuring user influence in twitter: the million follower fallacy. In: Proceedings of the international AAAI conference on weblogs and social media (ICWSM), pp 10–17

    Google Scholar 

  18. Suh B, Hong L, Pirolli P, Chi EH (2010) Want to be retweeted? Large scale analytics on factors impacting retweet in twitter network. In: Proceedings of the IEEE international conference on social computing, pp 177–184

    Google Scholar 

  19. Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: Proceedings of the ACM international conference on knowledge discovery and data mining (KDD)

    Google Scholar 

  20. Weng J, Lim E-P, Jiang J, He Q (2010) Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the ACM international conference on web search and data mining (WSDM)

    Google Scholar 

  21. Weng L, Menczer F (2015). Topicality and impact in social media: diverse messages, focused messengers. PLoS One 10(2):e0118410

    Article  Google Scholar 

  22. Romero DM, Galuba W, Asur S, Huberman BA (2011) Influence and passivity in social media. In: Proceedings of the international world wide web conference (Companion Volume), pp 113–114

    Google Scholar 

  23. Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, Makse HA (2010) Identification of influential spreaders in complex networks. Nat Phys 6(11):888–893

    Article  ADS  Google Scholar 

  24. Bakshy E, Mason WA, Hofman JM, Watts DJ (2011) Everyone’s an influencer: quantifying influence on twitter. In: Proceedings of the ACM international conference on web search and data mining (WSDM), pp 65–74

    Google Scholar 

  25. Brown J, Reingen P (1987) Social ties and word-of-mouth referral behavior. J Consum Res 14(3):350–362

    Article  Google Scholar 

  26. Granovetter MS (1973) The strength of weak ties. Am J Sociol 78(6):1360–1380

    Article  Google Scholar 

  27. Leskovec J, Adamic L, Huberman B (2007). The dynamics of viral marketing. ACM Trans Web 1(1):1–39

    Article  Google Scholar 

  28. Mason WA, Jones A, Goldstone RL (2008) Propagation of innovations in networked groups. J Exp Psychol Gen 137(3):422

    Google Scholar 

  29. Aral S, Walker D (2011) Creating social contagion through viral product design: a randomized trial of peer influence in networks. Manag Sci 57(9):1623–1639

    Article  Google Scholar 

  30. Pastor-Satorras R, Vespignani A (2001) Epidemic spreading in scale-free networks. Phys Rev Lett 86:3200–3203

    Article  ADS  Google Scholar 

  31. DJ Watts (2002) A simple model of global cascades on random networks. Proc Natl Acad Sci 99(9):5766–5771

    Google Scholar 

  32. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103(23):8577–8582

    Article  ADS  Google Scholar 

  33. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci 105(4):1118–1123

    Article  ADS  Google Scholar 

  34. Ahn Y-Y, Bagrow J, Lehmann S (2010) Link communities reveal multiscale complexity in networks. Nature 466(7307):761–764

    Article  ADS  Google Scholar 

  35. Fortunato S (2010) Community detection in graphs. Phys Rep 486(3):75–174

    Article  ADS  MathSciNet  Google Scholar 

  36. Nematzadeh A, Ferrara E, Flammini A, Ahn Y-Y (2014) Optimal network modularity for information diffusion. Phys Rev Lett 113(8):088701

    Google Scholar 

  37. Granovetter M (1978) Threshold models of collective behavior. Am J Sociol 83(6):1420–1443

    Article  Google Scholar 

  38. Schelling TC (1971) Dynamic models of segregation. J Math Sociol 1(2):143–186

    Article  Google Scholar 

  39. Centola D, Macy M (2007) Complex contagions and the weakness of long ties 1. Am J Sociol 113(3):702–734

    Article  Google Scholar 

  40. Centola D (2010) The spread of behavior in an online social network experiment. Science 329(5996):1194–1197

    Article  ADS  Google Scholar 

  41. Watts DJ (2002) A simple model of global cascades on random networks. Proc Natl Acad Sci 99(9):5766–5771

    Article  ADS  MathSciNet  Google Scholar 

  42. Conover MD, Ferrara E, Menczer F, Flammini A (2013) The digital evolution of occupy wall street. PLoS One 8(3):e55957

    Article  ADS  Google Scholar 

  43. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech Theory Exp 2008(10):P10008

    Article  Google Scholar 

  44. Fortunato S, Barthelemy M (2007) Resolution limit in community detection. Proc Natl Acad Sci 104(1):36–41

    Article  ADS  Google Scholar 

  45. Sotera. Spark-distributed-louvain-modularity. https://github.com/Sotera/spark-distributed-louvain-modularity

  46. Bae S-H, Halperin D, West J, Rosvall M, Howe B (2013) Scalable flow-based community detection for large-scale network analysis. In: IEEE 13th international conference on Data mining workshops (ICDMW), 2013. IEEE, Piscataway, pp 303–310

    Google Scholar 

  47. Bakshy E, Karrer B, Adamic L (2009) Social influence and the diffusion of user-created content. In: Proceedings of the ACM conference on electronic commerce, pp 325–334

    Google Scholar 

  48. Romero DM, Meeder B, Kleinberg J (2011) Differences in the mechanics of information diffusion across topics: idioms, political hashtags, and complex contagion on twitter. In: Proceedings of the international world-wide web conference (WWW)

    Google Scholar 

  49. Centola D (2010) The spread of behavior in an online social network experiment. Science 329(5996):1194–1197

    Article  ADS  Google Scholar 

  50. McPherson M, Lovin L, Cook J (2001) Birds of a feather: homophily in social networks. Annu Rev Sociol 27(1):415–444

    Article  Google Scholar 

  51. Centola D (2011) An experimental study of homophily in the adoption of health behavior. Science 334(6060):1269–1272

    Article  ADS  Google Scholar 

  52. Lerman K, Ghosh R (2010) Information contagion: an empirical study of the spread of news on digg and twitter social networks. In: Proceedings of the international AAAI conference on weblogs and social media (ICWSM), pp 90–97

    Google Scholar 

  53. Lancichinetti A, Fortunato S (2012) Consensus clustering in complex networks. Sci Rep 2:336

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pik-Mai Hui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hui, PM., Weng, L., Sahami Shirazi, A., Ahn, YY., Menczer, F. (2018). Scalable Detection of Viral Memes from Diffusion Patterns. In: Lehmann, S., Ahn, YY. (eds) Complex Spreading Phenomena in Social Systems. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-77332-2_11

Download citation

Publish with us

Policies and ethics