Skip to main content

Polymer Processing and Rheology

  • Living reference work entry
  • First Online:
Functional Polymers

Abstract

This chapter is devoted to the presentation of the fundamental rheological properties of polymers and their processing technologies. Measurements of the rheological properties offer a fast and reliable way to determine molecular weight distribution and long-chain branching, which, in combination with the processing conditions, have a decisive influence on the end-use product properties. Shear viscosity, elongational viscosity, normal stress differences, stress relaxation, and some other measures and rheological phenomena, of relevance to polymer processing, are discussed. The most widely used polymer processing technologies of extrusion and injection molding are discussed with some details. The discussion includes key features of equipment used and design and operation challenges. Brief descriptions are presented on calendering, compression molding, blow molding, thermoforming, rotational molding, fiber spinning, and additive manufacturing. It is argued that computer-aided flow analysis and rheological measurements are necessary for equipment design, troubleshooting, and optimization in the processing of thermoplastics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ABS:

Acrylonitrile butadiene styrene

AM:

Additive manufacturing

CaBER:

Capillary breakup extensional rheometer

EVA:

Ethylene-vinyl acetate

FDM:

Fused deposition modeling

HDPE:

High-density polyethylene

HLMI:

High load melt index

LAOS:

Large amplitude oscillatory shear

LDPE:

Low-density polyethylene

LLDPE:

Linear low-density polyethylene

LVE:

Linear viscoelasticity

MFI:

Melt flow index

MFR:

Melt flow rate

MI:

Melt index

MWD:

Molecular weight distribution

OEMs:

Original equipment manufacturers

PA:

Polyamide

PC:

Polycarbonate

PE:

Polyethylene

PET:

Polyethylene terephthalate

PP:

Polypropylene

PLA:

Polylactic acid

PMMA:

Polymethyl methacrylate

PS:

Polystyrene

PVC:

Polyvinyl chloride

RIM:

Reaction injection molding

RPM:

Revolutions per minute

SAOS:

Small amplitude oscillatory shear

SER:

Sentmanat extensional rheometer

SLS:

Selective laser sintering

SMEs:

Small and medium enterprises

SSE:

Single screw extruder

TSE:

Twin screw extruder

WFC:

Wood fiber composite

α :

Fitting parameter in Carreau-Yasuda model

γ :

Strain

\( \dot{\gamma} \) :

Shear rate

\( {\dot{\gamma}}_{\mathrm{app}} \) :

Shear rate (apparent)

\( {\dot{\gamma}}_{\mathrm{true}} \) :

Shear rate (true)

\( {\dot{\gamma}}_w \) :

Wall shear rate

ΔP:

Pressure drop

ΔPe:

Excess pressure drop

\( \dot{\varepsilon} \) :

Elongation rate

η :

Viscosity

η c :

Viscosity of the filled system

η d :

Viscosity of the dispersed phase

η e :

Elongational viscosity

η m :

Viscosity of the matrix

η o :

Zero shear viscosity

η * :

Complex viscosity

η ref :

Viscosity at a reference temperature

θ :

Screw helix angle

λ :

Fitting parameter in Carreau-Yasuda, cross models

ρ :

Melt density

σ 11 :

Tensile stress

τ :

Shear stress

τ w :

Wall shear stress

φ :

Volume fraction

φ max :

Maximum volume fraction

ω :

Frequency

A :

Area

A c :

Cross section of a cylindrical fluid element

a :

Pressure coefficient

b :

Temperature sensitivity coefficient

Ca :

Capillary number

d :

Extrudate diameter

D :

Capillary diameter

D b :

Barrel diameter

E :

Activation energy

F :

Force

G′ :

Storage modulus

G″ :

Loss modulus

h :

Gap between plates

H :

Channel depth in an extruder

H o :

Minimum distance between two rollers

k :

Einstein coefficient frequently denoted as [η]

K :

Consistency index

L :

Capillary length

M w :

Weight average molecular weight

N :

Rotational speed

N 1 :

First normal stress difference

N 1w :

First normal stress difference at the wall

N 2 :

Second normal stress difference

n :

Power law index

n B :

Bagley correction

p :

Pressure

P max :

Maximum pressure in calendering

Q :

Volume rate of flow

R :

Gas constant

R c :

Capillary radius

R d :

Drop radius

R rol :

Roller radius

S :

Interfacial tension

S R :

Stress ratio

t :

Time

T :

Temperature

T ref :

Reference temperature

U :

Velocity/speed

References

  1. D.H. Morton-Jones, Polymer Processing (Chapman and Hall, London, 1989)

    Book  Google Scholar 

  2. Z. Tadmor, C.G. Gogos, Principles of Polymer Processing (Wiley, New York, 2006)

    Google Scholar 

  3. J. Vlachopoulos, N. Polychronopoulos, Basic concepts in polymer melt rheology and their importance in processing, in Applied Polymer Rheology: Polymeric Fluids with Industrial Applications, ed. by M. Kontopoulou (Wiley, Hoboken, 2012), pp. 1–27

    Google Scholar 

  4. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol 1 (Wiley, New York, 1987)

    Google Scholar 

  5. A.V. Chenoy, D.R. Saini, Thermoplastic Melt Rheology and Processing (Marcel Dekker, New York, 1996)

    Google Scholar 

  6. C.D. Han, Rheology and Processing of Polymeric Materials, vol 1–2 (Oxford University Press, Oxford, 2007)

    Google Scholar 

  7. C.W. Macosko, Rheology: Principles, Measurements and Applications (VCH Publishers, New York, 1994)

    Google Scholar 

  8. F.N. Cogswell, Polymer Melt Rheology (Woodhead Publishing, Cambridge, 1996)

    Google Scholar 

  9. J. Vlachopoulos, Fundamentals of Fluid Mechanics (Polydynamics Inc., Dundas, 2016)

    Google Scholar 

  10. S.J. Haward, J.A. Odell, Z. Li, X.-F. Yuan, The rheology of polymer solution elastic strands in extensional flow. Rheol. Acta 49(7), 781–788 (2010)

    Article  CAS  Google Scholar 

  11. J.M. Dealy, R.G. Larson, Structure and Rheology of Molten Polymers (Hanser, Munich, 2006)

    Book  Google Scholar 

  12. M. Sentmanat, B.N. Wang, G.H. McKinley, Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform. J. Rheol. 49, 585–606 (2005)

    Article  CAS  Google Scholar 

  13. S.L. Anna, G.H. McKinley, Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol. 45(1), 115–138 (2001)

    Article  CAS  Google Scholar 

  14. M.M. Denn, Polymer Melt Processing (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  15. B. Debbaut, T. Avalose, J. Dooley, K. Hughes, On the development of secondary motions in straight channels induced by the second normal stress difference: experiments and simulations. J. Non-Newtonian Fluid Mech. 69(2–3), 255–271 (1997)

    Article  CAS  Google Scholar 

  16. J. Dooley, Viscoelastic Flow Effects in Multilayer Polymer Extrusion, Doctoral Thesis, University of Eindhoven, Netherlands, 2002

    Google Scholar 

  17. J.M. Dealy, K.F. Wissbrun, Melt Rheology and its Role in Plastics Processing (Chapman and Hall, London, 1996)

    Google Scholar 

  18. S.W. Shang, The precise determination of polydispersity index (PI) in rheological testing of polypropylene. Adv. Polym. Technol. 12(4), 389–401 (1993)

    Article  CAS  Google Scholar 

  19. R.H. Ewoldt, A.E. Hosoi, G.H. McKinley, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52, 1427 (2008)

    Article  CAS  Google Scholar 

  20. K. Hyun, M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, G.H. McKinley, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 36(12), 1697–1753 (2001)

    Article  Google Scholar 

  21. H.M. Laun, Prediction of elastic strains of polymer melts in shear and elongation. J. Rheol. 30, 459 (1986)

    Article  CAS  Google Scholar 

  22. M. Gale, Compounding with single-screw extruders. Adv. Polym. Technol. 16(4), 251–262 (1997)

    Article  CAS  Google Scholar 

  23. G.I. Taylor, The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. A Math. Phys. Sci. 138(834), 41–48 (1932)

    Article  CAS  Google Scholar 

  24. G.I. Taylor, The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A Math. Phys. Sci. 146(858), 501–523 (1934)

    Article  CAS  Google Scholar 

  25. H.P. Grace, Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem. Eng. Commun. 14, 225–277 (1982)

    Article  CAS  Google Scholar 

  26. I. Manas-Zloczower, Mixing and Compounding of Polymers (Hanser, Munich, 2009)

    Book  Google Scholar 

  27. J. Vlachopoulos, Extrudate swell in polymers. Rev. Deform. Beh. Materials 3, 219–248 (1981)

    CAS  Google Scholar 

  28. R.I. Tanner, Engineering Rheology (Oxford Engineering Science, Oxford, 2000)

    Google Scholar 

  29. J.-F. Agassant, D.R. Arda, C. Combeaud, A. Merten, H. Münsted, M.R. Mackley, L. Robert, B. Vergnes, Polymer processing extrusion instabilities and methods for their elimination or minimization. Int. Polym. Process. 21(3), 239–255 (2006)

    Article  CAS  Google Scholar 

  30. B. Vergnes, Extrusion defects and flow instabilities of molten polymers. Int. Polym. Process. 30(1), 3–28 (2015)

    Article  CAS  Google Scholar 

  31. A.V. Ramamurthy, Extrudate irregularities and the polymer-metal interface connection, in Proceedings of the Xth International Congress on Rheology (Sydney, 1988), pp. 85–90

    Google Scholar 

  32. E.C. Achilleos, G. Georgiou, S.G. Hatzikiriakos, Role of processing aids in the extrusion of molten polymers. J. Vinyl Addit. Technol. 8(1), 7–24 (2002)

    Article  CAS  Google Scholar 

  33. V. Hristov, E. Takacs, J. Vlachopoulos, Surface tearing and wall slip phenomena in extrusion of highly filled HDPE/wood flour composites. Polym. Eng. Sci. 46(9), 1204–1214 (2006)

    Article  CAS  Google Scholar 

  34. V. Hristov, J. Vlachopoulos, A study of viscoelasticity and extrudate distortions of wood polymer composites. Rheol. Acta 46(5), 773–783 (2007)

    Article  CAS  Google Scholar 

  35. J.D. Gander, A.J. Giacomin, Review of die lip build up in plastics extrusion. Polym. Eng. Sci. 37(7), 1113–1126 (1997)

    Article  CAS  Google Scholar 

  36. J. Musil, M. Zatloukal, Experimental investigation of flow induced molecular weight fractionation during extrusion of HDPE polymer melts. Chem. Eng. Sci. 66, 4814–4823 (2011)

    Article  CAS  Google Scholar 

  37. J.W. Goodwin, R.W. Hughes, Rheology for Chemists an Introduction (RSC Publishing, Cambridge, 2008)

    Google Scholar 

  38. R.K. Gupta, Polymer and Composites Rheology (Marcel-Dekker, New York, 2000)

    Google Scholar 

  39. L.E. Nielsen, Polymer Rheology (Marcel-Dekker, New York, 1977)

    Google Scholar 

  40. N.D. Polychronopoulos, Z. Charlton, D. Suwanda, J. Vlachopoulos, Measurements and comparison to predictions of viscosity of heavily filled HDPE with natural fibers. Adv. Polym. Technol. 37(4), 1161–1167 (2018). https://doi.org/10.1002/adv.21775

    Article  Google Scholar 

  41. L. Theodore, Nanotechnology (Wiley, New York, 2006)

    Google Scholar 

  42. M. Alexander, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 1–63 (2000)

    Article  Google Scholar 

  43. R.K. Gupta, V. Pasanovic-Zujo, S.N. Bhattacharya, Shear and extensional rheology of EVA/layered silicate-nanocomposites. J. Non-Newtonian Fluid Mech. 128, 116–125 (2005)

    Article  CAS  Google Scholar 

  44. T.G. Gopakumar, J.A. Lee, M. Kontopoulou, J.S. Parent, Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer 43(20), 5483–5491 (2002)

    Article  CAS  Google Scholar 

  45. S.N. Bhattacharya, R.K. Gupta, M.R. Kamal, Polymeric Nanocomposites (Hanser, Munich, 2008)

    Google Scholar 

  46. V. Pasanovic-Zujo, R.K. Gupta, S.N. Bhattacharya, Effect of vinyl acetate content and silicate loading on EVA nanocomposites under shear and extensional flow. Rheol. Acta 43(2), 99–108 (2004)

    Article  CAS  Google Scholar 

  47. C.I. Chung, Extrusion of Polymers (Hanser, Munich, 2000)

    Google Scholar 

  48. G.A. Campbell, M.A. Spalding, Analyzing and Troubleshooting Single-Screw Extruders (Hanser, Munich, 2013)

    Book  Google Scholar 

  49. C. Rauwendaal, Polymer Extrusion (Hanser, Munich, 2014)

    Book  Google Scholar 

  50. E. Grünschloß, A powerful universal plasticating system for single-screw-extruders and injection moulding machines. Int. Polym. Process. 30(2), 226–234 (2007)

    Google Scholar 

  51. E. Grünschloß, HELIBAR-A powerful Single Screw Plasticating System, SPE-ANTEC Conference, Cincinnati, 2007 pp. 405–410

    Google Scholar 

  52. J. Vlachopoulos, J. Wagner Jr. (eds.), The SPE Guide on Extrusion Technology and Troubleshooting (Society of Plastics Engineers, Brookfield, 2001)

    Google Scholar 

  53. F.G. Martellli, Twin-Screw Extruders: A Basic Understanding (Van Nostrand Reinhold, New York, 1983)

    Book  Google Scholar 

  54. J. Vlachopoulos, R. Castillo, N. Polychronopoulos, S. Tanifuji, Blown film dies, chapter 5, in Design of Extrusion Forming Tools, ed. by O. Carneiro, J.M. Nobrega (Smithers-Rapra, Shawbury 2012), pp. 141–168

    Google Scholar 

  55. N.D. Polychronopoulos, T.D. Papathanasiou, A study of the effect of drawing on extrudate swell in film casting. Appl. Rheol. 25, 42425 (2015)

    Google Scholar 

  56. J. Vlachopoulos, N. Polychronopoulos, S. Tanifuji, J. Peter Müller, Flat film and sheet dies, chapter 4, in Design of Extrusion Forming Tools, ed. by O. Carneiro, J.M. Nobrega (Smithers-Rapra, Shawbury 2012), pp. 113–140,

    Google Scholar 

  57. Y. Huang, P. Prentice, Experimental study and computer simulation of the effect of spider shape on the weld-lines in extruded plastic pipe. Polym. Eng. Sci. 38(9), 1506–1532 (1998)

    Article  CAS  Google Scholar 

  58. H.A. Simon, The Sciences of the Artificial (MIT Press, Cambridge, MA, 1996)

    Google Scholar 

  59. N.D. Polychronopoulos, I.E. Sarris, T.D. Papathanasiou, 3D features in the calendering of thermoplastics: A computational investigation. Polym. Eng. Sci. 54(7), 1712–1722 (2013)

    Article  Google Scholar 

  60. E.T. Thostenson, T.-W. Chou, Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 44, 3022–3029 (2006)

    Article  CAS  Google Scholar 

  61. H. Oxfall, J. Rondin, M. Bouquey, R. Muller, M. Rigdahl, R.W. Rychwalski, Elongational flow mixing for manufacturing of graphite nanoplatelet/polysterene composites. J. Appl. Polym. Sci. 128(5), 2679–2686 (2013)

    Article  CAS  Google Scholar 

  62. S.G. Prolongo, A. Jimenez-Suarez, R. Moriche, A. Ureña, In situ processing of epoxy composites reinforced with graphene nanoplatelets. Compos. Sci. Technol. 86, 185–191 (2013)

    Article  CAS  Google Scholar 

  63. H. Mavridis, A.N. Hrymak, J. Vlachopoulos, The effect of fountain flow on molecular orientation in injection molding. J. Rheol. 32(6), 639–663 (1988)

    Article  CAS  Google Scholar 

  64. A. I. Isayev (ed.), Injection and Compression Molding Fundamentals (Marcel Dekker, New York, 1987)

    Google Scholar 

  65. J.A. Dantzig, C.L. Tucker, Modeling in Materials Processing (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  66. J. Avery, Gas-Assist Injection Molding (Hanser Gardner, Cincinnati, 2001)

    Google Scholar 

  67. C.W. Macosko, Fundamentals of Reaction Injection Molding (Hanser, Munich, 1988)

    Google Scholar 

  68. P. K. Mallick, S. Newman (eds.), Composite Materials Technology (Hanser, Munich, 1990)

    Google Scholar 

  69. D.V. Rosato, D.V. Rosato, Blow Molding Handbook (Hanser, Munich, 1988)

    Google Scholar 

  70. M.R. Kamal, in Concise Encyclopedia of Polymer Processing and Applications, ed. by P.J. Corish (Pergamon Press, New York 1992), pp. 71–76

    Google Scholar 

  71. J.L. Throne, Technology of Thermoforming (Hanser, Munich, 1996)

    Book  Google Scholar 

  72. D. Bhattacharya, Composite Sheet Forming (Elsevier Science, Amsterdam, 1997)

    Google Scholar 

  73. R.J. Crawford, Rotational Molding of Plastics (Wiley, New York, 1992)

    Google Scholar 

  74. R.J. Crawford, J.L. Throne, Rotational Molding Technology (William Andrew Publishing, New York, 2002)

    Google Scholar 

  75. M. Narkis, N. Rosenzweig, Polymer Powder Technology (Wiley, New York, 1995)

    Google Scholar 

  76. M. Kontopoulou, J. Vlachopoulos, Melting and densification of thermoplastic powders. Polym. Eng. Sci. 41(2), 155–169 (2001)

    Article  CAS  Google Scholar 

  77. A. Ziabicki, Fundamentals of Fiber Formation: The Science of Fiber Spinning and Drawing (Wiley, New York, 1976)

    Google Scholar 

  78. T. Nakajima (ed.), Advanced Fiber Spinning Technology (Woodhead Publishing, Cambridge, 1994)

    Google Scholar 

  79. M. Schmid, A. Amado, K. Wegener, Polymer powders for selective laser sintering (SLS). AIP Conf. Proc. 1664, 160009 (2015)

    Article  Google Scholar 

  80. B.N. Turner, R. Strong, S.A. Gold, A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp. J. 20(3), 192–204 (2014)

    Article  Google Scholar 

  81. B.N. Turner, S.A. Gold, A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness. Rapid Prototyp. J. 21(3), 250–261 (2015)

    Article  Google Scholar 

  82. J. Hornick, 3D Printing Will Rock the World (CreateSpace, North Charleston, 2015)

    Google Scholar 

  83. F.A. Morrison, Understanding Rheology (Oxford University Press, Oxford, 2001)

    Google Scholar 

  84. H. Zhou, Computer Modeling for Injection Molding: Simulation, Optimization, and Control (Wiley, New York, 2013)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Vlachopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Polychronopoulos, N.D., Vlachopoulos, J. (2019). Polymer Processing and Rheology. In: Jafar Mazumder, M., Sheardown, H., Al-Ahmed, A. (eds) Functional Polymers. Polymers and Polymeric Composites: A Reference Series. Springer, Cham. https://doi.org/10.1007/978-3-319-92067-2_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92067-2_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92067-2

  • Online ISBN: 978-3-319-92067-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics