Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Turning Dynamics

verfasst von : Tony L. Schmitz, K. Scott Smith

Erschienen in: Machining Dynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chapter 3 describes regenerative chatter in turning. To predict turning behavior, both analytical and numerical analyses are presented. The analytical, frequency domain stability lobe diagram is derived that describes the limiting stable chip width as a function of spindle speed. A time domain simulation is detailed that determines the dynamic cutting force and tool displacement in turning by numerical integration. The simulation is then used to identify stable and unstable cutting conditions. Finally, the specific application of modulated tool path turning and the effect of process damping on turning stability at low speeds are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We represent \( \overrightarrow{y}(t) \) and \( \overrightarrow{y}\left(t-\tau \right) \) as vectors because they have both a magnitude and phase relative to the force, Fn. The force and both displacement vectors are displayed in Fig. 3.10.
 
2
In other words, the ratio of the chatter frequency to forcing frequency cannot be expressed as a ratio of whole numbers.
 
3
T. Schmitz recognizes the significant contributions of R. Copenhaver and M. Rubeo to the experimental setup.
 
4
T. Schmitz recognizes the significant contributions of C. Tyler to this section.
 
Literatur
1.
Zurück zum Zitat Trent, E., & Wright, P. (2000). Metal cutting (4th ed.). Boston, MA: Butterworth-Heinemann. Trent, E., & Wright, P. (2000). Metal cutting (4th ed.). Boston, MA: Butterworth-Heinemann.
2.
Zurück zum Zitat Tlusty, G. (2000). Manufacturing equipment and processes. Upper Saddle River, NJ: Prentice-Hall. Tlusty, G. (2000). Manufacturing equipment and processes. Upper Saddle River, NJ: Prentice-Hall.
3.
Zurück zum Zitat Altintas, Y. (2000). Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge: Cambridge University Press. Altintas, Y. (2000). Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge: Cambridge University Press.
4.
Zurück zum Zitat Stephenson, D., & Agapiou, J. (1997). Metal cutting theory and practice. New York, NY: Marcel Dekker, Inc. Stephenson, D., & Agapiou, J. (1997). Metal cutting theory and practice. New York, NY: Marcel Dekker, Inc.
5.
Zurück zum Zitat Schmitz, T. (2015). The microphone feedback analogy for chatter in machining. Shock and Vibration, 2015, 976819.CrossRef Schmitz, T. (2015). The microphone feedback analogy for chatter in machining. Shock and Vibration, 2015, 976819.CrossRef
6.
Zurück zum Zitat Zhang, Y. Z. (1980). Chip curl, chip breaking, and chip control of difficult-to-cut materials. Annals of the CIRP, 29(1), 79–83.CrossRef Zhang, Y. Z. (1980). Chip curl, chip breaking, and chip control of difficult-to-cut materials. Annals of the CIRP, 29(1), 79–83.CrossRef
7.
Zurück zum Zitat Adams, D. (2008) Chip breaking in turning operations using CNC toolpaths. MS thesis, UNC Charlotte, Charlotte, NC. Adams, D. (2008) Chip breaking in turning operations using CNC toolpaths. MS thesis, UNC Charlotte, Charlotte, NC.
8.
Zurück zum Zitat Assaid, T. S. (2010). Generation, measurement, and assessment of modulated tool-path chip breaking in CNC turning processes. MS thesis, UNC Charlotte, Charlotte, NC. Assaid, T. S. (2010). Generation, measurement, and assessment of modulated tool-path chip breaking in CNC turning processes. MS thesis, UNC Charlotte, Charlotte, NC.
9.
Zurück zum Zitat Tursky, D. (2010). Chip breaking through oscillating CNC toolpaths and its effect on chip length, tool wear and machine dynamics. MS thesis, UNC Charlotte, Charlotte, NC. Tursky, D. (2010). Chip breaking through oscillating CNC toolpaths and its effect on chip length, tool wear and machine dynamics. MS thesis, UNC Charlotte, Charlotte, NC.
10.
Zurück zum Zitat Berglind, L., & Zeigert, J. (2013). Chip breaking parameter selection for constant surface speed machining. In: ASME 2013 international mechanical engineering congress and exposition. Vol. 2B: Advanced manufacturing, San Diego, CA. Berglind, L., & Zeigert, J. (2013). Chip breaking parameter selection for constant surface speed machining. In: ASME 2013 international mechanical engineering congress and exposition. Vol. 2B: Advanced manufacturing, San Diego, CA.
11.
Zurück zum Zitat Berglind, L., & Zeigert, J. (2015). Modulated tool path (MTP) machining for threading applications. Procedia Manufacturing, 1, 546–555.CrossRef Berglind, L., & Zeigert, J. (2015). Modulated tool path (MTP) machining for threading applications. Procedia Manufacturing, 1, 546–555.CrossRef
12.
Zurück zum Zitat Copenhaver, R., Rubeo, M., Guzorek, S., Landge, S., Smith, K. S., Ziegert, J., & Schmitz, T. (2017). A fundamental investigation of modulated tool path turning mechanics. Procedia Manufacturing, 10, 159–170.CrossRef Copenhaver, R., Rubeo, M., Guzorek, S., Landge, S., Smith, K. S., Ziegert, J., & Schmitz, T. (2017). A fundamental investigation of modulated tool path turning mechanics. Procedia Manufacturing, 10, 159–170.CrossRef
13.
Zurück zum Zitat Rubeo, M., Copenhaver, R., Landge, S., & Schmitz, T. (2016). Experimental platform for in-process metrology during orthogonal turning, American Society for Precision Engineering Annual Meeting, October 23–28, Portland, OR. Rubeo, M., Copenhaver, R., Landge, S., & Schmitz, T. (2016). Experimental platform for in-process metrology during orthogonal turning, American Society for Precision Engineering Annual Meeting, October 23–28, Portland, OR.
14.
Zurück zum Zitat Schmitz, T., & Smith, K. S. (2012). Mechanical vibrations: Modeling and measurement. New York, NY: Springer.CrossRef Schmitz, T., & Smith, K. S. (2012). Mechanical vibrations: Modeling and measurement. New York, NY: Springer.CrossRef
15.
Zurück zum Zitat Delio, T., Tlusty, J., & Smith, S. (1992). Use of audio signals for chatter detection and control. Journal of Engineering for Industry, 114, 146–157. Delio, T., Tlusty, J., & Smith, S. (1992). Use of audio signals for chatter detection and control. Journal of Engineering for Industry, 114, 146–157.
16.
Zurück zum Zitat Honeycutt, A., & Schmitz, T. (2016). A new metric for automated stability identification in time domain milling simulation. Journal of Manufacturing Science and Engineering, 138(7), 074501.CrossRef Honeycutt, A., & Schmitz, T. (2016). A new metric for automated stability identification in time domain milling simulation. Journal of Manufacturing Science and Engineering, 138(7), 074501.CrossRef
17.
Zurück zum Zitat Honeycutt, A., & Schmitz, T. (2017). Milling stability interrogation by subharmonic sampling. Journal of Manufacturing Science and Engineering, 139(4), 041009.CrossRef Honeycutt, A., & Schmitz, T. (2017). Milling stability interrogation by subharmonic sampling. Journal of Manufacturing Science and Engineering, 139(4), 041009.CrossRef
18.
Zurück zum Zitat Smith, S. T. (2000). Flexures: elements of elastic mechanisms. Boca Raton, FL: CRC Press. Smith, S. T. (2000). Flexures: elements of elastic mechanisms. Boca Raton, FL: CRC Press.
19.
Zurück zum Zitat Wallace, P. W., & Andrew, C. (1965). Machining forces: Some effects of tool vibration. Journal of Mechanical Engineering Science, 7, 152–162.CrossRef Wallace, P. W., & Andrew, C. (1965). Machining forces: Some effects of tool vibration. Journal of Mechanical Engineering Science, 7, 152–162.CrossRef
20.
Zurück zum Zitat Sisson, T. R., & Kegg, R. L. (1969). An explanation of low-speed chatter effects. Journal of Engineering for Industry, 91, 951–958.CrossRef Sisson, T. R., & Kegg, R. L. (1969). An explanation of low-speed chatter effects. Journal of Engineering for Industry, 91, 951–958.CrossRef
21.
Zurück zum Zitat Peters, J., Vanherck, P., & Van Brussel, H. (1971). The measurement of the dynamic cutting coefficient. Annals of the CIRP, 21(2), 129–136. Peters, J., Vanherck, P., & Van Brussel, H. (1971). The measurement of the dynamic cutting coefficient. Annals of the CIRP, 21(2), 129–136.
22.
Zurück zum Zitat Tlusty, J. (1978). Analysis of the state of research in cutting dynamics. Annals of the CIRP, 27(2), 583–589. Tlusty, J. (1978). Analysis of the state of research in cutting dynamics. Annals of the CIRP, 27(2), 583–589.
23.
Zurück zum Zitat Wu, D. W. (1989). A new approach of formulating the transfer function for dynamic cutting processes. Journal of Engineering for Industry, 111, 37–47.CrossRef Wu, D. W. (1989). A new approach of formulating the transfer function for dynamic cutting processes. Journal of Engineering for Industry, 111, 37–47.CrossRef
24.
Zurück zum Zitat Elbestawi, M. A., Ismail, F., Du, R., & Ullagaddi, B. C. (1994). Modelling machining dynamics damping in the tool-workpiece interface. Journal of Engineering for Industry, 116, 435–439.CrossRef Elbestawi, M. A., Ismail, F., Du, R., & Ullagaddi, B. C. (1994). Modelling machining dynamics damping in the tool-workpiece interface. Journal of Engineering for Industry, 116, 435–439.CrossRef
25.
Zurück zum Zitat Lee, B. Y., Trang, Y. S., & Ma, S. C. (1995). Modeling of the process damping force in chatter vibration. International Journal of Machine Tools and Manufacture, 35, 951–962.CrossRef Lee, B. Y., Trang, Y. S., & Ma, S. C. (1995). Modeling of the process damping force in chatter vibration. International Journal of Machine Tools and Manufacture, 35, 951–962.CrossRef
26.
Zurück zum Zitat Abraria, F., Elbestawi, M. A., & Spencea, A. D. (1998). On the dynamics of ball end milling: Modeling of cutting forces and stability analysis. International Journal of Machine Tools and Manufacture, 38, 215–237.CrossRef Abraria, F., Elbestawi, M. A., & Spencea, A. D. (1998). On the dynamics of ball end milling: Modeling of cutting forces and stability analysis. International Journal of Machine Tools and Manufacture, 38, 215–237.CrossRef
27.
Zurück zum Zitat Ahmadi, K., & Ismail, F. (2010). Machining chatter in flank milling. International Journal of Machine Tools and Manufacture, 50, 75–85.CrossRef Ahmadi, K., & Ismail, F. (2010). Machining chatter in flank milling. International Journal of Machine Tools and Manufacture, 50, 75–85.CrossRef
28.
Zurück zum Zitat Huang, C. Y., & Wang, J. J. (2007). Mechanistic modeling of process damping in peripheral milling. Journal of Manufacturing Science and Engineering, 129, 12–20.CrossRef Huang, C. Y., & Wang, J. J. (2007). Mechanistic modeling of process damping in peripheral milling. Journal of Manufacturing Science and Engineering, 129, 12–20.CrossRef
29.
Zurück zum Zitat Chiou, Y. S., Chung, E. S., & Liang, S. Y. (1995). Analysis of tool wear effect on chatter stability in turning. International Journal of Mechanical Sciences, 37, 391–404.CrossRef Chiou, Y. S., Chung, E. S., & Liang, S. Y. (1995). Analysis of tool wear effect on chatter stability in turning. International Journal of Mechanical Sciences, 37, 391–404.CrossRef
30.
Zurück zum Zitat Chiou, R. Y., & Liang, S. Y. (1998). Chatter stability of a slender cutting tool in turning with tool wear effect. International Journal of Machine Tools and Manufacture, 38, 315–327.CrossRef Chiou, R. Y., & Liang, S. Y. (1998). Chatter stability of a slender cutting tool in turning with tool wear effect. International Journal of Machine Tools and Manufacture, 38, 315–327.CrossRef
31.
Zurück zum Zitat Chandiramani, N. K., & Pothala, T. (2006). Dynamics of 2-dof regenerative chatter during turning. Journal of Sound and Vibration, 290, 448–464.CrossRef Chandiramani, N. K., & Pothala, T. (2006). Dynamics of 2-dof regenerative chatter during turning. Journal of Sound and Vibration, 290, 448–464.CrossRef
32.
Zurück zum Zitat Jemielniak, K., & Widota, A. (1989). Numerical simulation of non-linear chatter vibration in turning. International Journal of Machine Tools and Manufacture, 29, 239–247.CrossRef Jemielniak, K., & Widota, A. (1989). Numerical simulation of non-linear chatter vibration in turning. International Journal of Machine Tools and Manufacture, 29, 239–247.CrossRef
33.
Zurück zum Zitat Ahmadi, K., & Ismail, F. (2010). Experimental investigation of process damping nonlinearity in machining chatter. International Journal of Machine Tools and Manufacture, 50, 1006–1014.CrossRef Ahmadi, K., & Ismail, F. (2010). Experimental investigation of process damping nonlinearity in machining chatter. International Journal of Machine Tools and Manufacture, 50, 1006–1014.CrossRef
34.
Zurück zum Zitat Budak, E., & Tunc, L. T. (2009). A new method for identification and modeling of process damping in machining. Journal of Manufacturing Science and Engineering, 131(051019), 1–10. Budak, E., & Tunc, L. T. (2009). A new method for identification and modeling of process damping in machining. Journal of Manufacturing Science and Engineering, 131(051019), 1–10.
35.
Zurück zum Zitat Altintas, Y., Eynian, M., & Onozuka, H. (2008). Identification of dynamic cutting force coefficients and chatter stability with process damping. Annals of the CIRP, 57(1), 371–374.CrossRef Altintas, Y., Eynian, M., & Onozuka, H. (2008). Identification of dynamic cutting force coefficients and chatter stability with process damping. Annals of the CIRP, 57(1), 371–374.CrossRef
36.
Zurück zum Zitat Tyler, C., & Schmitz, T. (2012). Process damping analytical stability analysis and validation. Transactions of the NAMRI/SME, 40, 37–47. Tyler, C., & Schmitz, T. (2012). Process damping analytical stability analysis and validation. Transactions of the NAMRI/SME, 40, 37–47.
37.
Zurück zum Zitat Tyler, C., & Schmitz, T. (2013). Analytical process damping stability prediction. Journal of Manufacturing Processes, 15, 69–76.CrossRef Tyler, C., & Schmitz, T. (2013). Analytical process damping stability prediction. Journal of Manufacturing Processes, 15, 69–76.CrossRef
38.
Zurück zum Zitat Tyler, C., Karandikar, J., & Schmitz, T. (2013). Process damping coefficient identification using Bayesian inference. Transactions of the NAMRI/SME, 41, 1–8. Tyler, C., Karandikar, J., & Schmitz, T. (2013). Process damping coefficient identification using Bayesian inference. Transactions of the NAMRI/SME, 41, 1–8.
39.
Zurück zum Zitat Tyler, C., & Schmitz, T. (2014). Process damping milling model database. Transactions of the NAMRI/SME, 42, 1–10. Tyler, C., & Schmitz, T. (2014). Process damping milling model database. Transactions of the NAMRI/SME, 42, 1–10.
40.
Zurück zum Zitat Tyler, C., Troutman, J., & Schmitz, T. (2015). Radial depth of cut stability lobe diagrams with process damping effects. Precision Engineering, 40, 318–324.CrossRef Tyler, C., Troutman, J., & Schmitz, T. (2015). Radial depth of cut stability lobe diagrams with process damping effects. Precision Engineering, 40, 318–324.CrossRef
41.
Zurück zum Zitat Tyler, C., Troutman, J., & Schmitz, T. (2016). A coupled dynamics, multiple degree of freedom process damping model, Part 1: Turning. Precision Engineering, 46, 65–72.CrossRef Tyler, C., Troutman, J., & Schmitz, T. (2016). A coupled dynamics, multiple degree of freedom process damping model, Part 1: Turning. Precision Engineering, 46, 65–72.CrossRef
42.
Zurück zum Zitat Tyler, C., Troutman, J., & Schmitz, T. (2016). A coupled dynamics, multiple degree of freedom process damping model, Part 2: Milling. Precision Engineering, 46, 73–80.CrossRef Tyler, C., Troutman, J., & Schmitz, T. (2016). A coupled dynamics, multiple degree of freedom process damping model, Part 2: Milling. Precision Engineering, 46, 73–80.CrossRef
Metadaten
Titel
Turning Dynamics
verfasst von
Tony L. Schmitz
K. Scott Smith
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-93707-6_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.