Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Milling Dynamics

verfasst von : Tony L. Schmitz, K. Scott Smith

Erschienen in: Machining Dynamics

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter describes regenerative chatter in milling. Similar to Chap. 3, both analytical and numerical analyses are presented to predict the process behavior. The analytical, frequency domain stability lobe diagram is adapted to milling. Two algorithms are described: average tooth angle and Fourier series. Time domain simulations for square (straight teeth and helical teeth) and ball endmills (helical teeth) are detailed. The cutting force model is then extended and an experimental procedure for identifying the cutting force coefficients is derived for two different fitting approaches. Finally, the effect of process damping on milling stability at low speeds is presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The “old” authors realize that graphic equalizer displays on stereos are not as common as they were in our teenage years. For that matter, they don’t call them “boom boxes” any more, do they? P.S. We are not that old!
 
2
We will assume a rigid workpiece in our analysis.
 
3
The selection of 67% was arbitrary. It caused the first point to not coincide with the cut entry so that the variation in the sampled force could be clearly observed.
 
4
Author T. Schmitz recognizes B. Mann for recommending this function.
 
5
Plowing (alternately ploughing), or plastic deformation without material removal, can also occur for significant interference between the tool relief surface and workpiece.
 
6
T. Schmitz recognizes the significant contributions of M. Rubeo to the nonlinear optimization analysis.
 
Literatur
1.
Zurück zum Zitat Kumanchik, L., & Schmitz, T. (2007). Improved analytical chip thickness model for milling. Precision Engineering, 31, 317–324.CrossRef Kumanchik, L., & Schmitz, T. (2007). Improved analytical chip thickness model for milling. Precision Engineering, 31, 317–324.CrossRef
2.
Zurück zum Zitat Tlusty, J., Zaton, W., & Ismail, F. (1983). Stability lobes in milling. Annals of the CIRP, 32(1), 309–313.CrossRef Tlusty, J., Zaton, W., & Ismail, F. (1983). Stability lobes in milling. Annals of the CIRP, 32(1), 309–313.CrossRef
3.
Zurück zum Zitat Smith, S., & Tlusty, J. (1990). Update on high-speed milling dynamics. Journal of Engineering for Industry, 112, 142–149.CrossRef Smith, S., & Tlusty, J. (1990). Update on high-speed milling dynamics. Journal of Engineering for Industry, 112, 142–149.CrossRef
4.
Zurück zum Zitat Smith, S., & Tlusty, J. (1991). An overview of modeling and simulation of the milling process. Journal of Engineering for Industry, 113, 169–175.CrossRef Smith, S., & Tlusty, J. (1991). An overview of modeling and simulation of the milling process. Journal of Engineering for Industry, 113, 169–175.CrossRef
5.
Zurück zum Zitat Altintas, Y., & Budak, E. (1995). Analytical prediction of stability lobes in milling. Annals of the CIRP, 44(1), 357–362.CrossRef Altintas, Y., & Budak, E. (1995). Analytical prediction of stability lobes in milling. Annals of the CIRP, 44(1), 357–362.CrossRef
6.
Zurück zum Zitat Davies, M., Pratt, J., Dutterer, B., & Burns, T. (2000). The stability of low radial immersion milling. Annals of the CIRP, 49(1), 37–40.CrossRef Davies, M., Pratt, J., Dutterer, B., & Burns, T. (2000). The stability of low radial immersion milling. Annals of the CIRP, 49(1), 37–40.CrossRef
7.
Zurück zum Zitat Davies, M., Pratt, J., Dutterer, B., & Burns, T. (2002). Stability prediction for low radial immersion milling. Journal of Manufacturing Science and Engineering, 124(2), 217–225.CrossRef Davies, M., Pratt, J., Dutterer, B., & Burns, T. (2002). Stability prediction for low radial immersion milling. Journal of Manufacturing Science and Engineering, 124(2), 217–225.CrossRef
8.
Zurück zum Zitat Bayly, P., Mann, B., Schmitz, T., Peters, D., Stépàn, G., & Insperger, T. (2002). Effects of radial immersion and cutting direction on chatter instability in endmilling. In Proceedings of ASME International Mechanical Engineering Conference and Exposition, IMECE2002-34116, New Orleans, LA (on CD). Bayly, P., Mann, B., Schmitz, T., Peters, D., Stépàn, G., & Insperger, T. (2002). Effects of radial immersion and cutting direction on chatter instability in endmilling. In Proceedings of ASME International Mechanical Engineering Conference and Exposition, IMECE2002-34116, New Orleans, LA (on CD).
9.
Zurück zum Zitat Mann, B., Bayly, P., Davies, M., & Halley, J. (2004). Limit cycles, bifurcations, and accuracy of the milling process. Journal of Sound and Vibration, 227, 31–48.CrossRef Mann, B., Bayly, P., Davies, M., & Halley, J. (2004). Limit cycles, bifurcations, and accuracy of the milling process. Journal of Sound and Vibration, 227, 31–48.CrossRef
10.
Zurück zum Zitat Schmitz, T., Davies, M., Medicus, K., & Snyder, J. (2001). Improving high-speed machining material removal rates by rapid dynamic analysis. Annals of the CIRP, 50(1), 263–268.CrossRef Schmitz, T., Davies, M., Medicus, K., & Snyder, J. (2001). Improving high-speed machining material removal rates by rapid dynamic analysis. Annals of the CIRP, 50(1), 263–268.CrossRef
11.
Zurück zum Zitat Schmitz, T., Medicus, K., & Dutterer, B. (2002). Exploring once-per-revolution audio signal variance as a chatter indicator. Machining Science and Technology, 6(2), 215–233.CrossRef Schmitz, T., Medicus, K., & Dutterer, B. (2002). Exploring once-per-revolution audio signal variance as a chatter indicator. Machining Science and Technology, 6(2), 215–233.CrossRef
12.
Zurück zum Zitat Schmitz, T. (2003). Chatter recognition by a statistical evaluation of the synchronously sampled audio signal. Journal of Sound and Vibration, 262(3), 721–730.CrossRef Schmitz, T. (2003). Chatter recognition by a statistical evaluation of the synchronously sampled audio signal. Journal of Sound and Vibration, 262(3), 721–730.CrossRef
13.
Zurück zum Zitat Delio, T., Tlusty, J., & Smith, S. (1992). Use of audio signals for chatter detection and control. Journal of Engineering for Industry, 114, 146–157. Delio, T., Tlusty, J., & Smith, S. (1992). Use of audio signals for chatter detection and control. Journal of Engineering for Industry, 114, 146–157.
14.
Zurück zum Zitat Honeycutt, A., & Schmitz, T. (2016). A new metric for automated stability identification in time domain milling simulation. Journal of Manufacturing Science and Engineering, 138(7), 074501.CrossRef Honeycutt, A., & Schmitz, T. (2016). A new metric for automated stability identification in time domain milling simulation. Journal of Manufacturing Science and Engineering, 138(7), 074501.CrossRef
15.
Zurück zum Zitat Honeycutt, A., & Schmitz, T. (2017). Milling stability interrogation by subharmonic sampling. Journal of Manufacturing Science and Engineering, 139(4), 041009.CrossRef Honeycutt, A., & Schmitz, T. (2017). Milling stability interrogation by subharmonic sampling. Journal of Manufacturing Science and Engineering, 139(4), 041009.CrossRef
16.
Zurück zum Zitat Tlusty, G. (2000). Manufacturing equipment and processes. Upper Saddle River, NJ: Prentice-Hall, Section 9.5.4. Tlusty, G. (2000). Manufacturing equipment and processes. Upper Saddle River, NJ: Prentice-Hall, Section 9.5.4.
17.
Zurück zum Zitat Altintas, Y., & Lee, P. (1996). A general mechanics and dynamics model for helical end mills. Annals of the CIRP, 45(1), 59–64.CrossRef Altintas, Y., & Lee, P. (1996). A general mechanics and dynamics model for helical end mills. Annals of the CIRP, 45(1), 59–64.CrossRef
18.
Zurück zum Zitat Altintas, Y. (2000). Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge: Cambridge University Press, Sect. 2.8.1. Altintas, Y. (2000). Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge: Cambridge University Press, Sect. 2.8.1.
19.
Zurück zum Zitat Duncan, G. S. (2006). Milling dynamics prediction and uncertainty analysis using receptance coupling substructure analysis. Ph.D. Dissertation, University of Florida. Duncan, G. S. (2006). Milling dynamics prediction and uncertainty analysis using receptance coupling substructure analysis. Ph.D. Dissertation, University of Florida.
20.
Zurück zum Zitat Koenisgberger, F., & Sabberwal, A. (1961). An investigation into the cutting force pulsations during milling operations. International Journal of Machine Tool Design and Research, 1, 15–33.CrossRef Koenisgberger, F., & Sabberwal, A. (1961). An investigation into the cutting force pulsations during milling operations. International Journal of Machine Tool Design and Research, 1, 15–33.CrossRef
21.
Zurück zum Zitat Tlusty, J., & MacNeil, P. (1975). Dynamics of cutting forces in end milling. Annals of the CIRP, 24(1), 21–25. Tlusty, J., & MacNeil, P. (1975). Dynamics of cutting forces in end milling. Annals of the CIRP, 24(1), 21–25.
22.
Zurück zum Zitat Kline, W., DeVor, R., & Lindberg, J. (1982). The prediction of cutting forces in end milling with applications to cornering cuts. International Journal of Machine Tool Design and Research, 22, 7–22.CrossRef Kline, W., DeVor, R., & Lindberg, J. (1982). The prediction of cutting forces in end milling with applications to cornering cuts. International Journal of Machine Tool Design and Research, 22, 7–22.CrossRef
23.
Zurück zum Zitat Fu, H., DeVor, R., & Kapoor, S. (1984). A mechanistic model for the prediction of the force system in face milling operations. Journal of Engineering for Industry, 111, 27–36. Fu, H., DeVor, R., & Kapoor, S. (1984). A mechanistic model for the prediction of the force system in face milling operations. Journal of Engineering for Industry, 111, 27–36.
24.
Zurück zum Zitat Yellowley, I. (1985). Observations of the mean values of forces, torque and specific power in the peripheral milling process. International Journal of Machine Tool Design and Research, 25, 337–346.CrossRef Yellowley, I. (1985). Observations of the mean values of forces, torque and specific power in the peripheral milling process. International Journal of Machine Tool Design and Research, 25, 337–346.CrossRef
25.
Zurück zum Zitat Amarego, E., & Whitfield, R. (1985). Computer based modeling of popular machining operations for forces and power prediction. Annals of the CIRP, 34, 65–69.CrossRef Amarego, E., & Whitfield, R. (1985). Computer based modeling of popular machining operations for forces and power prediction. Annals of the CIRP, 34, 65–69.CrossRef
26.
Zurück zum Zitat Wang, J.-J., Liang, S., & Book, W. (1994). Convolution analysis of cutting force pulsation. Journal of Engineering for Industry, 116, 17–25.CrossRef Wang, J.-J., Liang, S., & Book, W. (1994). Convolution analysis of cutting force pulsation. Journal of Engineering for Industry, 116, 17–25.CrossRef
27.
Zurück zum Zitat Endres, W., DeVor, R., & Kapoor, S. (1995). A dual-mechanism approach to the prediction of machining forces, Part 1: Model development. Journal of Engineering for Industry, 117, 526–533.CrossRef Endres, W., DeVor, R., & Kapoor, S. (1995). A dual-mechanism approach to the prediction of machining forces, Part 1: Model development. Journal of Engineering for Industry, 117, 526–533.CrossRef
28.
Zurück zum Zitat Budak, E., Altintas, Y., & Amarego, E. (1998). Prediction of milling force coefficients from orthogonal cutting data. Journal of Manufacturing Science and Engineering, 118, 216–224.CrossRef Budak, E., Altintas, Y., & Amarego, E. (1998). Prediction of milling force coefficients from orthogonal cutting data. Journal of Manufacturing Science and Engineering, 118, 216–224.CrossRef
29.
Zurück zum Zitat Jayaram, S., Kapoor, S., & DeVor, R. (2001). Estimation of the specific cutting pressures for mechanistic cutting force models. International Journal of Machine Tools and Manufacture, 41, 265–281.CrossRef Jayaram, S., Kapoor, S., & DeVor, R. (2001). Estimation of the specific cutting pressures for mechanistic cutting force models. International Journal of Machine Tools and Manufacture, 41, 265–281.CrossRef
30.
Zurück zum Zitat Wang, J.-J., & Zheng, C. (2002). An analytical force model with shearing and ploughing mechanisms for end milling. International Journal of Machine Tools and Manufacture, 42, 761–771.CrossRef Wang, J.-J., & Zheng, C. (2002). An analytical force model with shearing and ploughing mechanisms for end milling. International Journal of Machine Tools and Manufacture, 42, 761–771.CrossRef
31.
Zurück zum Zitat Chapra, S., & Canale, R. (1985). Numerical methods for engineers. New York, NY: McGraw-Hill Book Co., Section 10.1. Chapra, S., & Canale, R. (1985). Numerical methods for engineers. New York, NY: McGraw-Hill Book Co., Section 10.1.
32.
Zurück zum Zitat Rubeo, M., & Schmitz, T. (2016). Mechanistic force model coefficients: a comparison of linear regression and nonlinear optimization. Precision Engineering, 45, 311–321.CrossRef Rubeo, M., & Schmitz, T. (2016). Mechanistic force model coefficients: a comparison of linear regression and nonlinear optimization. Precision Engineering, 45, 311–321.CrossRef
33.
Zurück zum Zitat Coleman, T. F., & Li, Y. (1994). On the convergence of interior-reflective newton methods for nonlinear minimization subject to bounds. Mathematical Programming, 67, 189–224.MathSciNetCrossRef Coleman, T. F., & Li, Y. (1994). On the convergence of interior-reflective newton methods for nonlinear minimization subject to bounds. Mathematical Programming, 67, 189–224.MathSciNetCrossRef
34.
Zurück zum Zitat Smith, D., Smith, S., & Tlusty, J. (1998). High performance milling torque sensor. Journal of Manufacturing Science and Engineering, 120(3), 504–514.CrossRef Smith, D., Smith, S., & Tlusty, J. (1998). High performance milling torque sensor. Journal of Manufacturing Science and Engineering, 120(3), 504–514.CrossRef
35.
Zurück zum Zitat Altintas, Y., Eynian, M., & Onozuka, H. (2008). Identification of dynamic cutting force coefficients and chatter stability with process damping. Annals of the CIRP, 57(1), 371–374.CrossRef Altintas, Y., Eynian, M., & Onozuka, H. (2008). Identification of dynamic cutting force coefficients and chatter stability with process damping. Annals of the CIRP, 57(1), 371–374.CrossRef
36.
Zurück zum Zitat Tyler, C., & Schmitz, T. (2012). Process damping analytical stability analysis and validation. Transactions of the NAMRI/SME, 40, 1–8. Tyler, C., & Schmitz, T. (2012). Process damping analytical stability analysis and validation. Transactions of the NAMRI/SME, 40, 1–8.
37.
Zurück zum Zitat Tyler, C., & Schmitz, T. (2013). Analytical process damping stability prediction. Journal of Manufacturing Processes, 15, 69–76.CrossRef Tyler, C., & Schmitz, T. (2013). Analytical process damping stability prediction. Journal of Manufacturing Processes, 15, 69–76.CrossRef
38.
Zurück zum Zitat Tyler, C., Karandikar, J., & Schmitz, T. (2013). Process damping coefficient identification using bayesian inference. Transactions of the NAMRI/SME, 41, 1–8. Tyler, C., Karandikar, J., & Schmitz, T. (2013). Process damping coefficient identification using bayesian inference. Transactions of the NAMRI/SME, 41, 1–8.
39.
Zurück zum Zitat Tyler, C., & Schmitz, T. (2014). Process damping milling model database. Transactions of the NAMRI/SME, 42, 1–8. Tyler, C., & Schmitz, T. (2014). Process damping milling model database. Transactions of the NAMRI/SME, 42, 1–8.
40.
Zurück zum Zitat Tyler, C., Troutman, J., & Schmitz, T. (2015). Radial depth of cut stability lobe diagrams with process damping effects. Precision Engineering, 40, 318–324.CrossRef Tyler, C., Troutman, J., & Schmitz, T. (2015). Radial depth of cut stability lobe diagrams with process damping effects. Precision Engineering, 40, 318–324.CrossRef
41.
Zurück zum Zitat Tyler, C., Troutman, J., & Schmitz, T. (2016). A coupled dynamics, multiple degree of freedom process damping model, Part 1: Turning. Precision Engineering, 46, 65–72.CrossRef Tyler, C., Troutman, J., & Schmitz, T. (2016). A coupled dynamics, multiple degree of freedom process damping model, Part 1: Turning. Precision Engineering, 46, 65–72.CrossRef
42.
Zurück zum Zitat Tyler, C., Troutman, J., & Schmitz, T. (2016). A coupled dynamics, multiple degree of freedom process damping model, Part 2: Milling. Precision Engineering, 46, 73–80.CrossRef Tyler, C., Troutman, J., & Schmitz, T. (2016). A coupled dynamics, multiple degree of freedom process damping model, Part 2: Milling. Precision Engineering, 46, 73–80.CrossRef
Metadaten
Titel
Milling Dynamics
verfasst von
Tony L. Schmitz
K. Scott Smith
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-93707-6_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.