Skip to main content

Accelerating Likelihood Optimization for ICA on Real Signals

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10891))

Abstract

We study optimization methods for solving the maximum likelihood formulation of independent component analysis (ICA). We consider both the problem constrained to white signals and the unconstrained problem. The Hessian of the objective function is costly to compute, which renders Newton’s method impractical for large data sets. Many algorithms proposed in the literature can be rewritten as quasi-Newton methods, for which the Hessian approximation is cheap to compute. These algorithms are very fast on simulated data where the linear mixture assumption really holds. However, on real signals, we observe that their rate of convergence can be severely impaired. In this paper, we investigate the origins of this behavior, and show that the recently proposed Preconditioned ICA for Real Data (Picard) algorithm overcomes this issue on both constrained and unconstrained problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/pierreablin/picard.

References

  1. Comon, P.: Independent component analysis, a new concept? Sig. Process. 36(3), 287–314 (1994)

    Article  Google Scholar 

  2. Himberg, J., Hyvärinen, A., Esposito, F.: Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage 22(3), 1214–1222 (2004)

    Article  Google Scholar 

  3. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  4. Cardoso, J.-F.: Infomax and maximum likelihood for blind source separation. IEEE Sig. Process. Lett. 4(4), 112–114 (1997)

    Article  Google Scholar 

  5. Zibulevsky, M.: Blind source separation with relative Newton method. In: Proceedings of the ICA, vol. 2003, pp. 897–902 (2003)

    Google Scholar 

  6. Choi, H., Choi, S.: A relative trust-region algorithm for independent component analysis. Neurocomputing 70(7), 1502–1510 (2007)

    Article  Google Scholar 

  7. Palmer, J.A., Kreutz-Delgado, K., Makeig, S.: AMICA: an adaptive mixture of independent component analyzers with shared components. Technical report (2012)

    Google Scholar 

  8. Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  9. Hyvärinen, A.: The fixed-point algorithm and maximum likelihood estimation for independent component analysis. Neural Process. Lett. 10(1), 1–5 (1999)

    Article  Google Scholar 

  10. Ablin, P., Cardoso, J.-F., Gramfort, A.: Faster ICA under orthogonal constraint. In: Proceedings of the IEEE ICASSP (2018)

    Google Scholar 

  11. Ablin, P., Cardoso, J.-F., Gramfort, A.: Faster independent component analysis by preconditioning with hessian approximations, Arxiv Preprint (2017)

    Google Scholar 

  12. Pham, D.T., Garat, P.: Blind separation of mixture of independent sources through a quasi-maximum likelihood approach. IEEE Trans. Sig. Process. 45(7), 1712–1725 (1997)

    Article  Google Scholar 

  13. Cardoso, J.-F., Laheld, B.H.: Equivariant adaptive source separation. IEEE Trans. Sig. Process. 44(12), 3017–3030 (1996)

    Article  Google Scholar 

  14. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  Google Scholar 

  15. Karimi, H., Nutini, J., Schmidt, M.: Linear convergence of gradient and proximal-gradient methods under the Polyak-Łojasiewicz condition. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9851, pp. 795–811. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46128-1_50

    Chapter  Google Scholar 

  16. Nocedal, J.: Updating Quasi-Newton matrices with limited storage. Math. Comput. 35(151), 773–782 (1980)

    Article  MathSciNet  Google Scholar 

  17. Delorme, A., Palmer, J., Onton, J., Oostenveld, R., Makeig, S.: Independent EEG sources are dipolar. PLoS ONE 7(2), e30135 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Ablin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ablin, P., Cardoso, JF., Gramfort, A. (2018). Accelerating Likelihood Optimization for ICA on Real Signals. In: Deville, Y., Gannot, S., Mason, R., Plumbley, M., Ward, D. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2018. Lecture Notes in Computer Science(), vol 10891. Springer, Cham. https://doi.org/10.1007/978-3-319-93764-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93764-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93763-2

  • Online ISBN: 978-3-319-93764-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics