Skip to main content

2018 | OriginalPaper | Buchkapitel

Self-stabilizing Byzantine Tolerant Replicated State Machine Based on Failure Detectors

verfasst von : Shlomi Dolev, Chryssis Georgiou, Ioannis Marcoullis, Elad M. Schiller

Erschienen in: Cyber Security Cryptography and Machine Learning

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Byzantine Fault Tolerant (BFT) replication leverages highly available cloud services and can facilitate the implementation of distributed ledgers, e.g., the blockchain. Systems providing BFT State Machine Replication (SMR) work under severe system assumptions, for example, that less than a third of replicas may suffer a Byzantine failure. Infrequent arbitrary violations of such design assumptions, may lead the system to an unintended state, and render it unavailable thereafter, requiring human intervention. Self-stabilization is a highly desirable system property that can complement Byzantine fault tolerant systems, and allow them to both tolerate Byzantine-failures and automatically recovery from any unintended state that assumption violations may lead to.
This paper contributes the first self-stabilizing State Machine Replication service that is based on failure detectors. We suggest an implementable self-stabilizing failure detector to monitor both responsiveness and the replication progress. We thus encapsulate weaker synchronization guarantees than the previous self-stabilizing BFT SMR solution. We follow the seminal paper by Castro and Liskov of Practical Byzantine Fault Tolerance and focus on the self-stabilizing perspective. This work can aid towards building distributed blockchain system infrastructure enhanced with the self-stabilization design criteria.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
A 64-bit counter incremented per nanosecond, can last for 500 years (virtually an infinity).
 
Literatur
1.
Zurück zum Zitat Abraham, I., Malkhi, D.: The blockchain consensus layer and BFT. Bull. EATCS 3(123), 74–95 (2017)MathSciNet Abraham, I., Malkhi, D.: The blockchain consensus layer and BFT. Bull. EATCS 3(123), 74–95 (2017)MathSciNet
2.
Zurück zum Zitat Baldoni, R., Hélary, J., Raynal, M., Tanguy, L.: Consensus in Byzantine asynchronous systems. J. Discrete Algorithms 1(2), 185–210 (2003)MathSciNetCrossRef Baldoni, R., Hélary, J., Raynal, M., Tanguy, L.: Consensus in Byzantine asynchronous systems. J. Discrete Algorithms 1(2), 185–210 (2003)MathSciNetCrossRef
3.
Zurück zum Zitat Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: impossibility results and solutions using self-stabilizing failure detectors. Int. J. Syst. Sci. 28(11), 1177–1187 (1997)CrossRef Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: impossibility results and solutions using self-stabilizing failure detectors. Int. J. Syst. Sci. 28(11), 1177–1187 (1997)CrossRef
4.
Zurück zum Zitat Binun, A., Coupaye, T., Dolev, S., Kassi-Lahlou, M., Lacoste, M., Palesandro, A., Yagel, R., Yankulin, L.: Self-stabilizing Byzantine-tolerant distributed replicated state machine. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 36–53. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9_4CrossRef Binun, A., Coupaye, T., Dolev, S., Kassi-Lahlou, M., Lacoste, M., Palesandro, A., Yagel, R., Yankulin, L.: Self-stabilizing Byzantine-tolerant distributed replicated state machine. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 36–53. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-49259-9_​4CrossRef
6.
Zurück zum Zitat Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the OSDI 1999, pp. 173–186 (1999) Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the OSDI 1999, pp. 173–186 (1999)
7.
Zurück zum Zitat Dolev, S.: Self-stabilization. The MIT Press, Cambridge (2000)MATH Dolev, S.: Self-stabilization. The MIT Press, Cambridge (2000)MATH
8.
Zurück zum Zitat Dolev, S., Eldefrawy, K., Garay, J., Kumaramangalam, M.V., Ostrovsky, R., Yung, M.: Brief announcement: secure self-stabilizing computation. In: Proceedings of the PODC 2017, pp. 415–417 (2017) Dolev, S., Eldefrawy, K., Garay, J., Kumaramangalam, M.V., Ostrovsky, R., Yung, M.: Brief announcement: secure self-stabilizing computation. In: Proceedings of the PODC 2017, pp. 415–417 (2017)
9.
Zurück zum Zitat Dolev, S., Hanemann, A., Schiller, E.M., Sharma, S.: Self-stabilizing end-to-end communication in (bounded capacity, omitting, duplicating and non-FIFO) dynamic networks. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 133–147. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33536-5_14CrossRef Dolev, S., Hanemann, A., Schiller, E.M., Sharma, S.: Self-stabilizing end-to-end communication in (bounded capacity, omitting, duplicating and non-FIFO) dynamic networks. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp. 133–147. Springer, Heidelberg (2012). https://​doi.​org/​10.​1007/​978-3-642-33536-5_​14CrossRef
10.
Zurück zum Zitat Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of Byzantine faults. J. ACM 51(5), 780–799 (2004)MathSciNetCrossRef Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of Byzantine faults. J. ACM 51(5), 780–799 (2004)MathSciNetCrossRef
12.
Zurück zum Zitat Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)MathSciNetCrossRef Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)MathSciNetCrossRef
13.
Zurück zum Zitat Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)CrossRef Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Commun. ACM 21(7), 558–565 (1978)CrossRef
14.
Zurück zum Zitat Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)CrossRef Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)CrossRef
15.
Zurück zum Zitat Mostéfaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure detectors. In: Proceedings of DSN 2003, pp. 351–360 (2003) Mostéfaoui, A., Mourgaya, E., Raynal, M.: Asynchronous implementation of failure detectors. In: Proceedings of DSN 2003, pp. 351–360 (2003)
Metadaten
Titel
Self-stabilizing Byzantine Tolerant Replicated State Machine Based on Failure Detectors
verfasst von
Shlomi Dolev
Chryssis Georgiou
Ioannis Marcoullis
Elad M. Schiller
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-94147-9_7