Skip to main content

Abdominal Aortic Aneurysm Pathomechanics: Current Understanding and Future Directions

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1097))

Abstract

Abdominal aortic aneurysms (AAAs) are permanent, local expansions of the abdominal segment of the aorta that can potentially be fatal if progressing to rupture. AAAs are rarely found in patients under age 60, but are more common in older age groups, occurring in 2–3% of the whole population. Their rupture produces up to 14,000 deaths annually in the United States alone. Because aneurysmal rupture is a mechanical phenomenon, in recent years there has been a major effort among researchers to investigate the biologic and mechanical processes surrounding AAA progression and rupture. In addition to the basic science importance of understanding AAA pathophysiology, much of this research has been directed toward the development of accurate clinical criteria for assessing the risk of rupture on a patient-by-patient basis. This review first summarizes degenerative changes of the aorta wall associated with AAA pathogenesis. Current understanding of hemodynamics, transport, and wall mechanics in AAAs is then described, and open questions in aneurysm research are discussed along with potential directions in which further understanding could lead to improved clinical evaluation and management decision processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adolph R, Vorp DA, Steed DL, Webster MW, Kameneva MV, Watkins SC (1997) Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J Vasc Surg 25:916–926

    Article  CAS  PubMed  Google Scholar 

  • Alexander JJ (2004) The pathobiology of aortic aneurysms. J Surg Res 117:163–175

    Article  PubMed  Google Scholar 

  • Anton R, Chen CY, Hung MY, Finol EA, Pekkan K (2015) Experimental and computational investigation of the patient-specific abdominal aortic aneurysm pressure field. Comput Methods Biomech Biomed Engin 18:981–992

    Article  CAS  PubMed  Google Scholar 

  • Arzani A, Shadden SC (2012) Transport and mixing in patient specific abdominal aortic aneurysms with lagrangian coherent structures. Proceedings of the ASME Summer Bioengineering Conference; Parts A and B:9–10

    Google Scholar 

  • Arzani A, Shadden SC (2015) Characterizations and correlations of wall shear stress in aneurysmal flow. J Biomech Eng 138:014503–014510

    Article  Google Scholar 

  • Arzani A, Suh GY, McConnell MV, Dalman RL, Shadden SC (2013) Progression of abdominal aortic aneurysm: effect of lagrangian transport and hemodynamic parameters. Proceedings of the ASME Summer Bioengineering Conference; Pt A:V01AT01A004

    Google Scholar 

  • Arzani A, Suh GY, Dalman RL, Shadden SC (2014) A longitudinal comparison of hemodynamics and intraluminal thrombus deposition in abdominal aortic aneurysms. Am J Pysiol Heart Circ Physiol 307:H1786–H1795

    Article  CAS  Google Scholar 

  • Asbury CL, Ruberti JW, Bluth EI, Peattie RA (1996) Experimental investigation of steady flow in rigid models of abdominal aortic aneurysms. Ann Biomed Eng 23:29–39

    Article  Google Scholar 

  • Ashton HA, Buxton MJ, Day NE, Kim LG, Marteau TM, Scott RA, Thompson SG, Walker NM (2002) The multicentre aneurysm screening study (mass) into the effect of abdominal aortic aneurysm screening on mortality in men: a randomized control trial. Lancet 360:1531–1539

    Article  CAS  PubMed  Google Scholar 

  • Aslani E (2005) Geometric and wall pressure characterization of patient abdominal aortic aneurysms. MS Thesis. Oregon State University, Corvallis, OR

    Google Scholar 

  • Avolio AP (1980) Multi-branched model of the human arterial system. Med Biol Eng Comput 18:709–718

    Article  CAS  PubMed  Google Scholar 

  • Benson RA, Poole R, Murray S et al (2016) Screening results from a large United Kingdom abdominal aortic aneurysm screening center in the context of optimizing United Kingdom National Abdominal Aortic Aneurysm Screening Programme protocols. J Vasc Surg 63:301

    Article  PubMed  Google Scholar 

  • Bluth EI, Murphey SM, Hollier LH, Sullivan MA (1990) Color flow doppler in the evaluation of aortic aneurysms. Int Angiol 9:8–10

    CAS  PubMed  Google Scholar 

  • Bouillot P, Brina O, Ouared R, Lovblad KO, Farhat M, Pereira VM (2014) Particle imaging velocimetry evaluation of intracranial stents in sidewall aneurysm: hemodynamic transition related to the stent design. PLoS One 9:e113762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Callaghan FM, Karkouri J, Broadhouse K, Evin M, Fletcher DF, Grieve SM (2015) Thoracic aortic aneurysm: 4D flow MRI and computational fluid dynamics model. Comput Methods Biomech Biomed Engin 18(Suppl 1):1894–1895

    Article  PubMed  Google Scholar 

  • Carmo M, Colombo L, Bruno A, Corsi FRM, Roncoroni L et al (2002) Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 23:543–549

    Article  CAS  PubMed  Google Scholar 

  • Chaikof EL, Brewster DC, Dalman RL, makaroun MS, Illig KA, Sicard GA, Timaran CH, Upchurch GR, Veith FJ (2009) The care of patients with an abdominal aortic aneurysm: the Society for Vascular Surgery practice guidelines. J Vasc Surg 50:S2–S49

    Article  PubMed  Google Scholar 

  • Cheheltani R, Pichamuthu JE, Rao J, Weinbaum JS, Kiani MF, Vorp DA, Pleshko N (2017) Fourier transform infrared spectroscopic imaging-derived collagen content and maturity correlates with stress in the aortic wall of abdominal aortic aneurysm patients. Cardiovasc Eng Technol 8:70–80

    Article  PubMed  Google Scholar 

  • Chen CY, Anton R, Hung MY, Menon P, Finol EA, Pekkan K (2014) Effects of intraluminal thrombus on patient-specific abdominal aortic aneurysm hemodynamics via stereoscopic particle image velocity and computational fluid dynamics modeling. J Biomech Eng 136:031001–031009

    Article  PubMed  Google Scholar 

  • Choke E, Cockerill G, Wilson WRW, Sayed S, Dawson J, Loftus I, Thompson MM (2005) A review of biological factors implicated in abdominal aortic aneurysm rupture. Eur J Vasc Endovasc Surg 30:227–244

    Article  CAS  PubMed  Google Scholar 

  • Choksy SA, Wilmink AB, Quick CR (1999) Ruptured abdominal aortic aneurysm in the Huntingdon district: a 10-year experience. Ann R Coll Surg Engl 81:27–31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chong CK, How TV (2004) Flow patterns in an endovascular stent-graft for abdominal aortic aneurysm repair. J Biomech 37:89–97

    Article  CAS  PubMed  Google Scholar 

  • Darling RC, Messina CR, Brewster DC, Ottinger LW (1977) Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation 56S:161–164

    Google Scholar 

  • Davies PF, Dewey CF Jr, Bussolari SR, Gordon EJ, Gimbrone MA Jr (1984) Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J Clin Invest 73:1121–1129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis M, Harris M, Earnshaw JJ (2013) Implementation of the national health service abdominal aortic aneurysm screening program in England. J Vasc Surg 57:1440–1445

    Article  PubMed  Google Scholar 

  • Deplano V, Meyer C, Guivier-Curien C, Bertrand E (2013) New insights into the understanding of flow dynamics in an in vitro model for abdominal aortic aneurysms. Med Eng Phys 35:800–809

    Article  PubMed  Google Scholar 

  • Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    Article  PubMed  Google Scholar 

  • Di Martino ES, Bohra A, Vande Geest JP, Gupta N, Makaroun MS, Vorp DA (2006) Biomechanical properties of ruptured versus electively repaired abdominal aortic aneurysm wall tissue. J Vasc Surg 43:570–576; discussion 576

    Article  PubMed  Google Scholar 

  • DiMartino ES, Vorp DA (2003) Effect of variation in intraluminal thrombus constitutive properties on abdominal aortic aneurysm wall stress. Ann Biomed Eng 31:804–809

    Article  Google Scholar 

  • Dobrin PB, Baker WH, Gley WC (1984) Elastolytic and collagenolytic studies of arteries. Implications for the mechanical properties of aneurysms. Arch Surg 119:405–409

    Article  CAS  PubMed  Google Scholar 

  • Dorfmann AL, Wilson C, Edgar ES, Peattie RA (2010) Evaluating patient-specific abdominal aortic aneurysm wall stress based on flow-induced loading. Biomech Model Mechanobiol 9:127–139

    Article  CAS  PubMed  Google Scholar 

  • Doyle BJ, Grace PA, Kavanagh EG, Burke PE, Wallis F, Walsh MT, McGloughlin TM (2009) Improved assessment and treatment of abdominal aortic aneurysms: the use of 3D reconstructions as a surgical guidance tool in endovascular repair. Ir J Med Sci 178: 321–328

    Article  CAS  PubMed  Google Scholar 

  • Dua MM, Dalman RL (2010) Hemodynamic influences on abdominal aortic aneurysm disease: application of biomechanics to aneurysm pathophysiology. Vasc Pharmacol 53(1–2):11–21

    Article  CAS  Google Scholar 

  • Egelhoff CJ, Budwig RS, Elger DF, Khraishi TA, Johansen KH (1999) Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions. J Biomech 32:1319–1329

    Article  CAS  PubMed  Google Scholar 

  • Elger DF, Blackketter DM, Budwig RS, Johansen KH (1996) The influence of shape on the stresses in model abdominal aortic aneurysms. J Biomech Eng 118:326–332

    Article  CAS  PubMed  Google Scholar 

  • Ene F, Delassus P, Morris L (2014) The influence of computational assumptions on analysing abdominal aortic aneurysm haemodynamics. Proc Inst Mech Eng H 228:768–780

    Article  PubMed  Google Scholar 

  • Feller KJ, Atkinson SJ, Peattie RA (2001) Quantification of flow stability in patient-based models of abdominal aortic aneurysms. ASME-BED 50:753

    Google Scholar 

  • Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195:5685–5706

    Article  Google Scholar 

  • Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE (2002) In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg 36:589–597

    Article  PubMed  Google Scholar 

  • Fillinger MF, Marra SP, Raghavan ML, Kennedy FE (2003) Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg 37:724–732

    Article  PubMed  Google Scholar 

  • Finol EA, Amon CH (2001) Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J Biomech Eng 123:474–484

    Article  CAS  PubMed  Google Scholar 

  • Finol EA, Keyhani K, Amon CH (2003) The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions. J Biomech Eng 125:207–217

    Article  CAS  PubMed  Google Scholar 

  • Fisher GM, Llaurado JG (1966) Collagen and elastin content in canine arteries selected from functionally different vascular beds. Circ Res 19:394–399

    Article  Google Scholar 

  • Fraser KH, Meagher S, Blake JR, Easson WJ, Hoskins PR (2008) Characterization of an abdominal aortic velocity waveform in patients with abdominal aortic aneurysm. Ultrasound Med Biol 34:73–80

    Article  PubMed  Google Scholar 

  • Freestone T, Turner RJ, Coady A, Higman DJ, Greenhalgh RM, Powell JT (1995) Inflammation and matrix metalloproteinases in the enlarging abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 15:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Fung Y-C (1981) Biomechanics: mechanical properties of living tissue. Springer-Verlag Inc., New York

    Book  Google Scholar 

  • Ganong WF (1997) Review of medical physiology, 19th edn. Appleton & Lange, Stamford, CT

    Google Scholar 

  • Gasser TC, Gorgulu G, Folkesson M, Swedenborg J (2008) Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J Vasc Surg 48:179–188

    Article  PubMed  Google Scholar 

  • Gasser TC, Gallinetti S, Xing X, Forsell C, Swedenborg J, Roy J (2012) Spatial orientation of collagen fibers in the abdominal aortic aneurysm’s wall and its relation to wall mechanics. Acta Biomater 8:3091–3103

    Article  CAS  PubMed  Google Scholar 

  • Ghansah JN, Murphy JT (2004) Complications of major aortic and lower extremity vascular surgery. Semin Cardiothorac Vasc Anesth 8:335–361

    Article  PubMed  Google Scholar 

  • Gopalakrishnan SS, Pier B, Biesheuvel A (2014) Dynamics of pulsatile flow through model abdominal aortic aneurysms. J Fluid Mech 758:150–179

    Article  Google Scholar 

  • Grøndal N, Søgaard R, Lindholt JS (2015) Baseline prevalence of abdominal aortic aneurysm, peripheral arterial disease and hypertension in men aged 65-74 years from a population screening study (VIVA trial). Br J Surg 102:902

    Article  PubMed  Google Scholar 

  • Hall AJ, Busse EFG, McCarville DJ, Burgess JJ (2000) Aortic wall tension as a predictive factor for abdominal aortic aneurysm rupture: improving the selection of patients for abdominal aortic aneurysm repair. Ann Vasc Surg 14:152–157

    Article  CAS  PubMed  Google Scholar 

  • Hardman D, Semple SI, Richards JMJ, Hoskins PR (2013) Comparison of patient-specific inlet boundary conditions in the numerical modelling of blood flow in abdominal aortic aneurysm disease. Int J Numer Method Biomed Eng 29:165–178

    Article  PubMed  Google Scholar 

  • He CM, Roach MR (1994) The composition and mechanical properties of abdominal aortic aneurysms. J Vasc Surg 20:6–13

    Article  CAS  PubMed  Google Scholar 

  • Hellenthal FA, Geenen IL, Teijink JA, Heeneman S, Schurink GW (2009a) Histological features of human abdominal aortic aneurysm are not related to clinical characteristics. Cardiovasc Pathol 18:286–293

    Article  PubMed  Google Scholar 

  • Hellenthal FA, Buurman WA, Wodzig WK, Schurink GW (2009b) Biomarkers of AAA progression. Part 1:extracellular matrix degeneration. Nat Rev Cardiol 6:464–474

    Article  CAS  PubMed  Google Scholar 

  • Heng MS, Fagan MJ, Collier JW, Desai G, McCollum PT, Chetter IC (2008) Peak wall stress measurement in elective and acute abdominal aortic aneurysms. J Vasc Surg 47:17–22

    Article  PubMed  Google Scholar 

  • Hinnen JW, Rixen DJ, Koning OH, van Bockel JH, Hamming JF (2007) Development of fibrinous thrombus analogue for in-vitro abdominal aortic aneurysm studies. J Biomech 40:289–295

    Article  CAS  PubMed  Google Scholar 

  • Holmes DR, Liao S, Parks WC, Thompson RW (1995) Medial neovascularization in abdominal aortic aneurysms: a histopathologic marker of aneurysmal degeneration with pathophysiologic implications. J Vasc Surg 21:761–771; discussion 771–762

    Article  CAS  PubMed  Google Scholar 

  • Holzapfel GA, Ogden RW (eds) (2017) Biomechanics: trends in modeling and simulation. Springer-Verlag Inc, New York

    Google Scholar 

  • Holzapfel GA, Sommer G, Regitnig P (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J Biomech Eng 126:657–665

    Article  PubMed  Google Scholar 

  • Howard DP, Banerjee A, Fairhead JF et al (2015) Population-based study of incidence of acute abdominal aortic aneurysms with projected impact of screening strategy. J Am Heart Assoc 4:e001926

    Article  PubMed Central  PubMed  Google Scholar 

  • Humphrey JD (1999) Remodelling of a collagenous tissue at fixed lengths. J Biomech Eng 121:591–597

    Article  CAS  PubMed  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer-Verlag Inc, New York

    Book  Google Scholar 

  • Humphrey JD, Holzapfel GA (2012) Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech 45:805–814

    Article  CAS  PubMed  Google Scholar 

  • Humphrey JD, Taylor CA (2008) Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Ann Rev Biomed Eng 10:221–246

    Article  CAS  Google Scholar 

  • Imura T, Yamamoto K, Kanamori K, Mikami T, Yasuda H (1986) Non-invasive ultrasonic measurement of the elastic properties of the human abdominal aorta. Cardiovasc Res 20:208–214

    Article  CAS  PubMed  Google Scholar 

  • Indrakusuma R, Jalalzadeh H, Planken RN, Marquering HA, Legemate DA, Koelemay MJ, Balm R (2016) Biomechanical imaging markers as predictors of abdominal aortic aneurysm growth or rupture: a systematic review. Eur J Vasc Endovasc Surg 52: 475–486

    Article  CAS  PubMed  Google Scholar 

  • Inzoli F, Boschetti F, Zappa M, Longo T, Fumero R (1993) Biomechanical factors in abdominal aortic aneurysm rupture. Eur J Vasc Surg 7:667–674

    Article  CAS  PubMed  Google Scholar 

  • Karkos C, Mukhodpadhyay U, Papakostas I, Ghosh J, Thomson G, Hughes R (2000) Abdominal aortic aneurysm: the role of clinical examination and opportunistic detection. Eur J Vasc Endovasc Surg 19: 299

    Article  CAS  PubMed  Google Scholar 

  • Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, Swedenborg J (2003) Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg 38:1283–1292

    Article  PubMed  Google Scholar 

  • Khanafer KM, Bull JL, Upchurch GR, Berguer R (2007) Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions. Ann Vasc Surg 21:67–74

    Article  PubMed  Google Scholar 

  • Khanafer KM, Bull JL, Berguer R (2009) Fluid-structure interaction of turbulent pulsatile flow within a flexible wall axisymmetric aortic aneurysm model. Eur J Mech B Fluids 28:88–102

    Article  Google Scholar 

  • Kung EO, Les AS, Medina F, Wicker RB, McConnell MV, Taylor CA (2011) In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions. J Biomech Eng 133:041003–041011

    Article  PubMed  Google Scholar 

  • Lanne T, Sonesson B, Bergqvist D, Bengtsson H, Gustafsson D (1992) Diameter and compliance in the male human abdominal aorta: influence of age and aortic aneurysm. Eur J Vasc Surg 6:178–184

    Article  CAS  PubMed  Google Scholar 

  • Lederle FA (2009) The natural history of abdominal aortic aneurysm. Acta Chir Belg 109:7–12

    Article  CAS  PubMed  Google Scholar 

  • Lederle FA, Johnson GR, Wilson SE, Ballard DJ, Jordan WD Jr, Blebea J, Littooy FN, Freischlag JA, Bandyk D, Rapp JH, Salam AA, Veterans Affairs Cooperative Study, I (2002) Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA 287:2968–2972

    Article  PubMed  Google Scholar 

  • Lijnen HR (2001) Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost 86:324–333

    Article  CAS  PubMed  Google Scholar 

  • Lin WJ, Iafrati MD, Peattie RA, Dorfmann L (2018) Growth and remodeling with application to abdominal aortic aneurysms. J Eng Math 109. https://doi.org/10.1007/s10665-017-9915-9

    Article  Google Scholar 

  • Lozowy R, Kuhn D, Ducas A, Boyd A (2017) The relationship between pulsatile flow impingement and intraluminal thrombus deposition in abdominal aortic aneurysms. Cardiovasc Eng Tech 8:57–69

    Article  Google Scholar 

  • Lu YH, Mani K, Panigrahi B, Hsu WT, Chen CY (2016) Endoleak assessment using computational fluid dynamics and image processing methods in stented abdominal aortic aneurysm models. Comput Math Methods Med 2016:9

    Google Scholar 

  • Maier A, Gee MW, Reeps C, Eckstein HH, Wall WA (2010) Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech Model Mechanobiol 9:511–521

    Article  CAS  PubMed  Google Scholar 

  • Markl M, Draney MT, Hope MD, Levin JM, Chan FP, Alley MT, Pelc NJ, Herfkens RJ (2004) Time-resolved 3-dimensional velocity mapping in the thoracic aorta: visualization of 3-directional blood flow patterns in healthy volunteers and patients. J Comput Assist Tomogr 28:459–468

    Article  PubMed  Google Scholar 

  • Marrero VL, Tichy JA, Sahni O, Jansen KE (2014) Numerical study of purely viscous non-newtonian flow in an abdominal aortic aneurysm. J Biomech Eng 136:101001–101010

    Article  PubMed  Google Scholar 

  • van Marrewijk CJ, Leurs J, Vallabhaneni SR, Harris PL, Buth J, Laheij RJ (2005) Risk-adjusted outcome analysis of endovascular abdominal aortic aneurysm repair in a large population: how do stent-grafts compare? J Endovasc Ther 12:417–429

    Article  PubMed  Google Scholar 

  • Martufi G, Gasser TC (2013) Review: the role of biomechanical modeling in the rupture risk assessment for abdominal aortic aneurysms. J Biomech Eng 135:021010

    Article  PubMed  Google Scholar 

  • McGee GS, Baxter BT, Shively VP, Chisholm R, McCarthy WJ, Flinn WR, Yao JST, Pearce WH (1991) Aneurysm or occlusive disease-factors determining the clinical course of atherosclerosis of the infrarenal aorta. Surgery 110:370–376

    CAS  PubMed  Google Scholar 

  • Mescher AM (2016) Junqueira’s basic histology, text and atlas, 14th edn. McGraw-Hill Lange, New York

    Google Scholar 

  • Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, van Herwaarden JA, Holt PJE, van Keulen JW, Rantner B, Schlosser FJV, Setacci F, Ricco J-B (2011) Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg 41:S1–S58

    Article  PubMed  Google Scholar 

  • Mower WR, Quinones WJ, Gambhir SS (1997) Effect of intraluminal thrombus on abdominal aortic aneurysm wall stress. J Vasc Surg 26:602–608

    Article  CAS  PubMed  Google Scholar 

  • National Center for Health Statistics (2008) www.cdc.gov/nchs/data/nvsr/nvsr56/nvsr56_10.pdf

  • National Center for Health Statistics (2018) www.cdc.gov/nchs/deaths.htm

  • Neofytou P, Tsangaris S, Kyriakidis M (2008) Vascular wall flow-induced forces in a progressively enlarged aneurysm model. Comput Methods Biomech Biomed Engin 11:615–626

    Article  PubMed  Google Scholar 

  • O’Leary SA, Kavanagh EG, Grace PA, McGloughlin TM, Doyle BJ (2014a) The biaxial mechanical behaviour of abdominal aortic aneurysm intraluminal thrombus: classification of morphology and the determination of layer and region specific properties. J Biomech 47:1430–1437

    Article  PubMed  Google Scholar 

  • O’Leary SA, Healey DA, Kavanagh EG, Walsh MT, McGloughlin TM, Doyle BJ (2014b) The biaxial biomechanical behavior of abdominal aortic aneurysm tissue. Ann Biomed Eng 42:2440–2450

    Article  PubMed  Google Scholar 

  • O’Rourke MJ, McCullough JP (2008) A comparison of the measured and predicted flowflield in a patient-specific model of an abdominal aortic aneurysm. Proc Inst Mech Eng H 222:737–750

    Article  PubMed  Google Scholar 

  • O’Rourke MJ, McCullough JP (2010) An investigation of the flow field within patient-specific models of an abdominal aortic aneurysm under steady inflow conditions. Proc Inst Mech Eng H 224:971–988

    Article  PubMed  Google Scholar 

  • O’Rourke MJ, McCullough JP, Kelly S (2012) An investigation of the relationship between hemodynamics and thrombus deposition within patient-specific models of abdominal aortic aneurysm. Proc Inst Mech Eng H 226:548–564

    Article  PubMed  Google Scholar 

  • Ouriel K, Green RM, Donayre C, Shortell CK, Elliott J, DeWeese A (1992) An evaluation of new methods of expressing aortic aneurysm size: relationship to rupture. J Vasc Surg 15:12–20

    Article  CAS  PubMed  Google Scholar 

  • Pancheri FQ, Peattie RA, Reddy ND, Ahamed T, Lin W, Ouellette TD, Iafrati MD, Dorfmann AL (2017) Histology and biaxial mechanical behavior of abdominal aortic aneurysm tissue samples. J Biomech Eng 139:031002. https://doi.org/10.1115/1.4035261

    Article  Google Scholar 

  • Parashar A, Singh R, Panigrahi PK, Muralidhar K (2013) Chaotic flow in an aortic aneurysm. J Appl Phys 113:214909

    Article  CAS  Google Scholar 

  • Peattie RA, Asbury CL, Bluth EI, Ruberti JW (1996a) Steady flow in models of abdominal aortic aneurysms. Part I: investigation of the velocity patterns. J Ultrasound Med 15:679–688

    Article  CAS  PubMed  Google Scholar 

  • Peattie RA, Asbury CL, Bluth EI, Riehle TJ (1996b) Steady flow in models of abdominal aortic aneurysms. Part II: wall stresses and their implications for in vivo thrombosis and rupture. J Ultrasound Med 15:689–696

    Article  CAS  PubMed  Google Scholar 

  • Peattie RA, Riehle TJ, Bluth EI (2004) Pulsatile flow in fusiform models of abdominal aortic aneurysms: flow fields, velocity patterns and flow-induced wall stresses. J Biomech Eng 126:438–446

    Article  PubMed  Google Scholar 

  • Perktold K (1987) On the paths of fluid particles in an axisymmetrical aneurysm. J Biomech 20:311–317

    Article  CAS  PubMed  Google Scholar 

  • Poelma C, Watton PN, Ventikos Y (2015) Transitional flow in aneurysms and the computation of haemodynamic parameters. J R Soc Interface 12. https://doi.org/10.1098/rsif.2014.1394

    Article  PubMed Central  PubMed  Google Scholar 

  • Polzer S, Gasser TC (2015) Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index. J R Soc Interface 12:20150852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polzer S, Gasser TC, Bursa J, Staffa R, Vlachovsky R, Man V, Skacel P (2013) Importance of material model in wall stress prediction in abdominal aortic aneurysms. Med Eng Phys 35:1282–1289

    Article  PubMed  Google Scholar 

  • Raghavan ML, Fillinger MF, Marra SP, Naegelein BP, Kennedy FE (2005) Automated methodology for determination of stress distribution in human abdominal aortic aneurysm. J Biomech Eng 127:868–871

    Article  PubMed  Google Scholar 

  • Raghavan ML, Kratzberg J, Castro de Tolosa EM, Hanaoka MM, Walker P, Da Silva ES (2006) Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysms. J Biomech 39:3010–3016

    Article  PubMed  Google Scholar 

  • Rana MS, Rubby MF, Hasan ABMT (2015) Study of physiological flow through an abdominal aortic aneurysm (AAA). Procedia Eng 105:885–892

    Article  Google Scholar 

  • Raut SS, Chandra S, Shum J, Finol EA (2013a) The role of geometric and biomechanical factors in abdominal aortic aneurysm rupture risk assessment. Ann Biomed Eng 41:1459–1477

    Article  PubMed Central  PubMed  Google Scholar 

  • Raut SS, Jana A, De Oliveira V, Muluk SC, Finol EA (2013b) The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics. J Biomech Eng 135:81010

    Article  PubMed  Google Scholar 

  • Reeps C, Pelisek J, Seidi S, Schuster T, Zimmermann A, Kuehnl A, Eckstein HH (2009) Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology 76:243–252

    Article  CAS  PubMed  Google Scholar 

  • Reeps C, Maier A, Pelisek J, Heartl F, Grabher-Meier V, Wall WA, Essler M, Eckstein HH, Gee MW (2013) Measuring and modeling patient-specific distributions of material properties in abdominal aortic aneurysm wall. Biomech Model Mechanobiol 12: 717–733

    Article  CAS  PubMed  Google Scholar 

  • Regnier P, Lareyre F, Hassen-Khodja R, Durand M, Touma J, Raffort J (2018) Sexual dysfunction after abdominal aortic aneurysm surgical repair: current knowledge and future directions. Eur J Vasc Endovasc Surg 55(2):267–280. https://doi.org/10.1016/j.ejvs.2017.11.028

    Article  PubMed  Google Scholar 

  • RESCAN Collaborators, Brown MJ, Sweeting MJ et al (2013) Surveillance intervals for small abdominal aortic aneurysms: a meta-analysis. JAMA 309:806–813

    Article  Google Scholar 

  • Rodella LF, Rezzani R, Bonomini F, Peroni M, Cocchi MA, Hirtler L, Bonardelli S (2016) Abdominal aortic aneurysm and histological, clinical, radiological correlation. Acta Histochem 118:256–262

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez JF, Ruiz C, Doblaré M, Holzapfel GA (2008) Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J Biomech Eng 130:021023

    Article  PubMed  Google Scholar 

  • Sakalihasan N, Limet R, Defawe OD (2005) Abdominal aortic aneurysm. Lancet 365:1577–1589

    Article  CAS  PubMed  Google Scholar 

  • Satta J, Laara E, Juvonen T (1996) Intraluminal thrombus predicts rupture of an abdominal aortic aneurysm. J Vasc Surg 23:737–739

    Article  CAS  PubMed  Google Scholar 

  • van Schaik TG, Yeung KK, Verhagen HJ, de Bruin JL, van Sambeek MRHM, Balm R, Zeebregts CJ, van Herwaarden JA, Blankensteijn JD (2017) Long-term survival and secondary procedures after open or endovascular repair of abdominal aortic aneurysms. J Vasc Surg 66:1379–1389. https://doi.org/10.1016/j.jvs.2017.05.122

    Article  PubMed  Google Scholar 

  • Schmid H, Grytsan A, Poshtan E, Watton PN, Itskov M (2013) Influence of differing material properties in media and adventitia on arterial adaptation--application to aneurysm formation and rupture. Comput Methods Biomech Biomed Engin 16:33–53

    Article  CAS  PubMed  Google Scholar 

  • Scotti CM, Finol EA (2007) Compliant biomechanics of abdominal aortic aneurysms: a fluid-structure interaction study. Comput Struct 85:1097–1113

    Article  Google Scholar 

  • Scotti CM, Shkolnik AD, Muluk SC, Finol EA (2005) Fluid-structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed Eng Online 4:64

    Article  PubMed Central  PubMed  Google Scholar 

  • da Silva SE, Rodrigues AJ, Magalhães Castro de Tolosa E, Rodrigues CJ, Villas Boas do Prado G, Nakamoto JC (2000) Morphology and diameter of infrarenal aortic aneurysms: a prospective autopsy study. Cardiovasc Surg 8:526–532

    Article  Google Scholar 

  • Sobolewski K, Wolanska M, Bankowski E, Gacko M, Glowinski S (1995) Collagen, elastin and glycosaminoglycans in aortic aneurysms. Acta Biochim Pol 42:301–308

    CAS  PubMed  Google Scholar 

  • Speelman L, Bohra A, Bosboom EMH, Schurink GWH, van de Vosse FN, Makaorun MS, Vorp DA (2007) Effects of wall calcifications in patient- specific wall stress analyses of abdominal aortic aneurysms. J Biomech Eng 129:105–109

    Article  PubMed  Google Scholar 

  • von Spiczak J, Crelier G, Giese D, Kozerke S, Maintz D, Bunck AC (2015) Quantitative analysis of vortical blood flow in the thoracic aorta using 4D phase contrast MRI. PLoS One 10:e0139025

    Article  CAS  Google Scholar 

  • Stamatopoulos C, Papaharilaou Y, Mathioulakis DS, Katsamouris A (2010) Steady and unsteady flow within an axisymmetric tube dilatation. Exp Thermal Fluid Sci 34:915–927

    Article  Google Scholar 

  • Stamatopoulos C, Mathioulakis DS, Papaharilaou Y, Katsamouris A (2011) Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model. Exp Fluids 50:1695–1709

    Article  CAS  Google Scholar 

  • Steinman DA, Hoi Y, Fahy P et al (2013) Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 summer bioengineering conference CFD challenge. J Biomech Eng 135:021016–021013

    Article  PubMed  Google Scholar 

  • Stergiopulos N, Young DF, Rogge TR (1992) Computer simulation of arterial flow with applications to arterial and aortic stenoses. J Biomech 25:1477–1488

    Article  CAS  PubMed  Google Scholar 

  • Stringfellow MM, Lawrence PF, Stringfellow RG (1987) The influence of aorta aneurysm geometry upon stress in the aneurysm wall. J Surg Res 42:425–433

    Article  CAS  PubMed  Google Scholar 

  • Sumner DS, Hokanson DE, Strandness DE Jr (1970) Stress-strain characteristics and collagen-elastin content of abdominal aortic aneurysms. Surg Gynecol Obstet 130:459–466

    CAS  PubMed  Google Scholar 

  • Sun N, Leung JH, Wood NB, Hughes AD, Thom SA, Cheshire NJ, Xu XY (2009) Computational analysis of oxygen transport in a patient-specific model of abdominal aortic aneurysm with intraluminal thrombus. Br J Radiol 82(1):S18–S23

    Article  PubMed  Google Scholar 

  • Svensjö S, Björck M, Gürtelschmid M et al (2011) Low prevalence of abdominal aortic aneurysm among 65-year-old Swedish men indicates a change in the epidemiology of the disease. Circulation 124:1118

    Article  PubMed  Google Scholar 

  • Swedenborg J, Kazi M, Eriksson P, Hedin U (2004) Influence of the intraluminal thrombus in abdominal aortic aneurysms. Acta Chir Belg 104:606–608

    Article  CAS  PubMed  Google Scholar 

  • Tang BT, Cheng CP, Draney MT, Wilson NM, Tsao PS, Herfkens RJ, Taylor CA (2006) Abdominal aortic hemodynamics in young healthy adults at rest and during lower limb exercise: quantification using image-based computer modeling. Am J Physiol Heart Circ Physiol 291:H668–H676

    Article  CAS  PubMed  Google Scholar 

  • Tanios F, Gee MW, Pelisek J, Kehl S, Biehler J, Grabher-Meier V, Wall WA, Eckstein HH, Reeps C (2015) Interactions of biomechanics with extracellular matrix components in abdominal aortic aneurysm wall. Eur J Vasc Endovasc Surg 50:167–174

    Article  CAS  PubMed  Google Scholar 

  • Taylor MG (1966) Wave transmission through an assembly of randomly branching elastic tubes. Biophys J 6:697–716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor TW, Yamaguchi T (1994) Three-dimensional simulation of blood flow in an abdominal aortic aneurysm—steady and unsteady flow cases. J Biomech Eng 116:89–97

    Article  CAS  PubMed  Google Scholar 

  • Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng 26:975–987

    Article  CAS  PubMed  Google Scholar 

  • Taylor CA, Hughes TJ, Zarins CK (1999) Effect of exercise on hemodynamic conditions in the abdominal aorta. J Vasc Surg 29:1077–1089

    Article  CAS  PubMed  Google Scholar 

  • Thompson S, Brown L, Sweeting M, Bown M, Kim L, Glover M, Buxton M, Powell J (2013) Systematic review and meta-analysis of the growth and rupture rates of small abdominal aortic aneurysms: implications for surveillance intervals and their cost-effectiveness. Health Technol Assess 17:1–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tong J, Holzapfel GA (2015) Structure, mechanics and histology of intraluminal thrombi in abdominal aortic aneurysms. Ann Biomed Eng 43:1488–1501

    Article  PubMed  Google Scholar 

  • Tong J, Cohnert T, Regitnig P, Holzapfel GA (2011) Effects of age on the elastic properties of the intraluminal thrombus and the thrombus-covered wall in abdominal aortic aneurysms: biaxial extension behavior and material modelling. Eur J Vasc Endovasc Surg 42: 207–219

    Article  CAS  PubMed  Google Scholar 

  • Tong J, Schreifl AJ, Cohnert T, Holzapfel GA (2013) Gender differences in biomechanical properties, thrombus age, mass fraction, and clinical factors of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 45:364–372

    Article  CAS  PubMed  Google Scholar 

  • United States Census Bureau (2018) Percent Distribution of the Projected Population by Sex and Selected Age Groups for the United States: 2015 to 2060. http://www.census.gov/population/projections/data/national/2014/summarytables.html

  • Vande Geest JP, Wang DH, Wisniewski SR, Makaroun MS, Vorp DA (2006a) Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng 34:1098–1106

    Article  PubMed  Google Scholar 

  • Vande Geest JP, Sacks MS, Vorp DA (2006b) The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech 39:1324–1334

    Article  PubMed  Google Scholar 

  • Vande Geest JP, Dillavou ED, Di Martino ES, Oberdier M, Bohra A, Makaroun MS, Vorp DA (2006c) Gender-related differences in the tensile strength of abdominal aortic aneurysm. Ann N Y Acad Sci 1085:400–402

    Article  PubMed  Google Scholar 

  • Vardulaki KA, Prevost TC, Walker NM, Day NE, Wilmink ABM, Quick C, Ashton H, Scott R (1998) Growth rates and risk of rupture of abdominal aortic aneurysms. Br J Surg 85:1674–1680

    Article  CAS  PubMed  Google Scholar 

  • Vorp DA (2007) Biomechanics of abdominal aortic aneurysm. J Biomech 40:1887–1902

    Article  PubMed Central  PubMed  Google Scholar 

  • Vorp DA, Vande Geest JP (2005) Biomechanical determinants of abdominal aortic aneurysm rupture. Arterioscler Thromb Vasc Biol 25:1558–1566

    Article  CAS  PubMed  Google Scholar 

  • Vorp DA, Wang DH, Webster MW, Federspiel WJ (1998a) Effect of intraluminal thrombus thickness and bulge diameter on the oxygen diffusion in abdominal aortic aneurysm. J Biomech Eng 120:579–583

    Article  CAS  PubMed  Google Scholar 

  • Vorp DA, Raghavan ML, Webster MW (1998b) Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J Vasc Surg 27:632–639

    Article  CAS  PubMed  Google Scholar 

  • Vorp DA, Lee PC, Wang DH, Makaroun MS, Nemoto EM, Ogawa S, Webster MW (2001) Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg 34:291–299

    Article  CAS  PubMed  Google Scholar 

  • Wang DHJ, Makaroun M, Webster MW, Vorp DA (2001) Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J Biomech Eng 123:536–539

    Article  CAS  PubMed  Google Scholar 

  • Wang DH, Makaroun MS, Webster MW, Vorp DA (2002) Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg 36:598–604

    Article  PubMed  Google Scholar 

  • Watton PN, Hill NA (2009) Evolving mechanical properties of a model of abdominal aortic aneurysm. Biomech Model Mechanobiol 8:25–42

    Article  CAS  PubMed  Google Scholar 

  • Watton PN, Heil M, Hill NA (2004) A mathematical model for the growth of the abdominal aortic aneurysm. Biomech Model Mechanobiol 3:98–113

    Article  CAS  PubMed  Google Scholar 

  • Westerhof N, Bosman F, De Vries CJ, Noordergraaf A (1969) Analog studies of the human systemic arterial tree. J Biomech 2:121–143

    Article  CAS  PubMed  Google Scholar 

  • Wilson JS, Virag L, Di Achille P, Karsaj I, Humphrey JD (2013) Biochemomechanics of intraluminal thrombus in abdominal aortic aneurysms. J Biomech Eng 135:021011

    Article  CAS  PubMed  Google Scholar 

  • Wolf YG, Thomas WS, Brennan FJ, Goff WG, Sise MJ, Bernstein EF (1994) Computed tomography scanning findings associated with rapid expansion of abdominal aortic aneurysms. J Vasc Surg 20:529–535; discussion 535–528

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Price MD, Amarasekara HS, Green SY, Woodside SJ, Tullos A, Zhang Q, Coselli JS, LeMaire SA (2018) Unplanned readmissions after open thoracoabdominal aortic aneurysm repair. Ann Thorac Surg 105:228–234. https://doi.org/10.1016/j.athoracsur.2017.08.014

    Article  PubMed  Google Scholar 

  • Xiang J, Tutino VM, Snyder KV, Meng H (2014) CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment. Am J Neuroradiol 35:1849–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu SCM, Chan WK, Ng BTH, Chua LP (1999) A numerical investigation on the steady and pulsatile flow characteristics in axi-symmetric abdominal aortic aneurysm models with some experimental evaluation. J Med Eng Technol 23:228–239

    Article  CAS  PubMed  Google Scholar 

  • Zarins CK, Weisenberg E, Kolettis G, Stankunavicius R, Glagov S (1988) Differential enlargement of artery segments in response to enlarging atherosclerotic plaques. J Vasc Surg 7:386–394

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Gerhard Holzapfel for the use of images 2b and 2d, Mr. Sudharsan Madhavan for the assistance with the preparation of Fig. 3, and Mr. Erik Edgar for the assistance with the preparation of Figs. 4 and 5. This work was supported by National Science Foundation [grant numbers CMMI-1031366, CMMI-1352955].

Declaration of Conflicting Interests The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Peattie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kemmerling, E.M.C., Peattie, R.A. (2018). Abdominal Aortic Aneurysm Pathomechanics: Current Understanding and Future Directions. In: Fu, B., Wright, N. (eds) Molecular, Cellular, and Tissue Engineering of the Vascular System. Advances in Experimental Medicine and Biology, vol 1097. Springer, Cham. https://doi.org/10.1007/978-3-319-96445-4_8

Download citation

Publish with us

Policies and ethics