Skip to main content

Lectures on the Langlands Program and Conformal Field Theory

  • Chapter
Frontiers in Number Theory, Physics, and Geometry II

Abstract

These lecture notes give an overview of recent results in geometric Langlands correspondence which may yield applications to quantum field theory. It has long been suspected that the Langlands duality should somehow be related to various dualities observed in quantum field theory and string theory. Indeed, both the Langlands correspondence and the dualities in physics have emerged as some sort of non-abelian Fourier transforms. Moreover, the so-called Langlands dual group introduced by R. Langlands in [1] that is essential in the formulation of the Langlands correspondence also plays a prominent role in the study of S-dualities in physics and was in fact also introduced by the physicists P. Goddard, J. Nuyts and D. Olive in the framework of four-dimensional gauge theory [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P. Langlands, Problems in the theory of automorphic forms, in Lect. Notes in Math. 170, pp. 18–61, Springer Verlag, 1970.

    Google Scholar 

  2. P. Goddard, J. Nuyts and D. Olive, Gauge Theories and Magnetic Change, Nuclear Phys. B125 (1977) 1–28.

    MathSciNet  Google Scholar 

  3. E. Witten, Talk at the DARPA Workshop on the Langlands Program and Physics, IAS, March 2004; Gauge theory and the geometric Langlands Program, notes of a talk at the Third Simons Workshop, SUNY at Stony Brook, August 2005, available at http://insti.physics.sunysb.edu/itp/conf/ simonswork3/talks/Witten.pdf

    Google Scholar 

  4. A. Kapustin, Wilson-'t Hooft operators in four-dimensional gauge theories and S-duality, Preprint hep-th/0501015.

    Google Scholar 

  5. E. Witten, Quantum field theory, Grassmannians, and algebraic curves, Comm. Math. Phys. 113 (1988) 529–600.

    Article  MathSciNet  Google Scholar 

  6. A. Belavin, A. Polyakov and A. Zamolodchikov, Infinite conformal symmetries in two—dimensional quantum field theory, Nucl. Phys. B241 (1984) 333–380.

    Article  MathSciNet  Google Scholar 

  7. D. Friedan and S. Shenker, The analytic geometry of two-dimensional conformal field theory, Nucl. Phys. B281 (1987) 509–545.

    Article  MathSciNet  Google Scholar 

  8. G. Segal, The definition of conformal field theory, in Topology, geometry and quantum field theory, pp. 421–577, London Math. Soc. Lecture Note Ser. 308, Cambridge University Press, 2004.

    Google Scholar 

  9. V. Knizhnik and A. Zamolodchikov, Current algebra and Wess—Zumino model in two dimensions, Nucl. Phys. B247 (1984) 83–103.

    Article  MathSciNet  Google Scholar 

  10. E. Witten, Non-abelian bosonization in two dimensions, Comm. Math. Phys. 92 (1984) 455–472.

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Feigin and E. Frenkel, afine Kac-Moody algebras at the critical level and Gelfand-Dikii algebras, Int. J. Mod. Phys. A7, Suppl. 1A (1992) 197–215.

    MathSciNet  Google Scholar 

  12. E. Frenkel, Wakimoto modules, opers and the center at the critical level, Adv. Math. 195 (2005) 297–404 (math.QA/0210029).

    Article  MATH  MathSciNet  Google Scholar 

  13. V. Drinfeld and V. Sokolov, Lie algebras and KdV type equations, J. Sov. Math. 30 (1985) 1975–2036.

    Article  Google Scholar 

  14. A. Beilinson and V. Drinfeld, Opers, Preprint math.AG/0501398.

    Google Scholar 

  15. A. Beilinson and V. Drinfeld, Quantization of Hitchin's integrable system and Hecke eigensheaves, available at http://www.math.uchicago. edu/~arinkin/langlands

    Google Scholar 

  16. A. Polyakov and P. Wiegmann, Goldstone fields in two dimensions with mutivalued actions, Phys. Lett. 141B (1984) 223–228.

    MathSciNet  Google Scholar 

  17. A. Beilinson and V. Drinfeld, Chiral algebras American Mathematical Society Colloquium Publications 51, AMS, 2004.

    Google Scholar 

  18. A. Beilinson, Langlands parameters for Heisenberg modules, Preprint math.QA/0204020.

    Google Scholar 

  19. D. Gaitsgory, Notes on 2D conformal field theory and string theory, in Quantum fields and strings: a course for mathematicians, Vol. 2, pp. 1017–1089, AMS, 1999.

    Google Scholar 

  20. E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs 88, Second Edition, AMS, 2004.

    Google Scholar 

  21. J. Arthur, Automorphic representations and number theory in Seminar on Harmonic Analysis (Montreal, 1980), pp. 3–51, CMS Conf. Proc. 1, AMS, 1981. J. Arthur, The principle of functoriality, Bull. AMS 40 (2002) 39–53. A. Borel, Automorphic L—functions, in Automorphic Forms, Representations and L—functions, Part 2, Proc. of Symp. in Pure Math. 33, pp. 27–61, AMS, 1979. A.W. Knapp, Introduction to the Langlands program, in Representation theory and automorphic forms (Edinburgh, 1996), pp. 245–302, Proc. Symp. Pure Math. 61, AMS, 1997. M.R. Murty, A motivated introduction to the Langlands program, in Advances in number theory (Kingston, ON, 1991), pp. 37–66, Oxford Univ. Press, 1993.

    Google Scholar 

  22. S. Gelbart, An elementary introduction to the Langlands program, Bull. Amer. Math. Soc. 10 (1984) 177–219.

    Article  MATH  MathSciNet  Google Scholar 

  23. G. Laumon, Travaux de Frenkel, Gaitsgory et Vilonen sur la correspondance de Drinfeld-Langland, Séminaire Bourbaki, Exp. No. 906 (math.AG/0207078).

    Google Scholar 

  24. J. Bernstein and S. Gelbart, eds., An Introduction to the Langlands Program, Birkhäuser, 2004.

    Google Scholar 

  25. E. Frenkel, afine algebras, Langlands duality and Bethe ansatz, in Proceedings of the International Congress of Mathematical Physics, Paris, 1994, ed. D. Iagolnitzer, pp. 606–642, International Press, 1995 (qalg/9506003).

    Google Scholar 

  26. E. Frenkel, Recent Advances in the Langlands Program, Bull. Amer. Math. Soc. 41 (2004) 151–184 (math.AG/0303074).

    Article  MATH  MathSciNet  Google Scholar 

  27. N. Koblitz, p-adic numbers, p-adic analysis, and zeta-functions, Graduate Texts in Mathematics 58, Springer-Verlag, 1977.

    Google Scholar 

  28. R. Langlands, Letter to A. Weil, January 1967, available at http://www.sunsite.ubc.ca/DigitalMathArchive/Langlands/functoriality.html #weil1967

    Google Scholar 

  29. S. Kudla, From modular forms to automorphic representations, in [24], pp. 133–152.

    Google Scholar 

  30. E. de Shalit, L—functions of elliptic curves and modular forms, in [24], pp. 89–108.

    Google Scholar 

  31. R. Taylor, Galois representations, available at http://abel.math. harvard.edu/rtaylor

    Google Scholar 

  32. K. Ribet, Galois representations and modular forms, Bull. AMS 32 (1995) 375–402.

    MATH  MathSciNet  Google Scholar 

  33. D. Bump, Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics 55, Cambridge University Press, 2004.

    Google Scholar 

  34. H. Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Sci. école Norm. Sup. (4) 19 (1986) 409–468.

    MATH  MathSciNet  Google Scholar 

  35. A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. (2) 141 (1995) 443–551. R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2) 141 (1995) 553–572. C. Breuil, B. Conrad, F. Diamond and R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001) 843–939.

    Article  MATH  MathSciNet  Google Scholar 

  36. V.G. Drinfeld, Two-dimensional l—adic representations of the fundamental group of a curve over a finite field and automorphic forms on GL(2), Amer. J. Math. 105 (1983) 85–114.

    Article  MATH  MathSciNet  Google Scholar 

  37. V.G. Drinfeld, Langlands conjecture for GL(2) over function field, Proc. of Int. Congress of Math. (Helsinki, 1978), pp. 565–574; Moduli varieties of F—sheaves, Funct. Anal. Appl. 21 (1987) 107–122; The proof of Petersson's conjecture for GL (2) over a global field of characteristic p, Funct. Anal. Appl. 22 (1988) 28–43.

    Google Scholar 

  38. L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (2002) 1–241.

    Article  MATH  MathSciNet  Google Scholar 

  39. A.N. Parshin, Abelian coverings of arithmetic schemes, Sov. Math. Dokl. 19 (1978) 1438–1442. K. Kato, A generalization of local class field theory by using K—groups, J. Fac. Sci. Univ . Tokyo, Sec. 1A 26 (1979) 303–376.

    MATH  Google Scholar 

  40. M. Kapranov, Analogies between the Langlands correspondence and topological quantum field theory, in Functional analysis on the eve of 21st century, S. Gindikin, J. Lepowsky, R. Wilson (eds.), vol. 1, Progress in Math. 131, p. 119–151, Birkhäuser, 1995.

    Google Scholar 

  41. E. Frenkel and D. Gaitsgory, Local geometric Langlands correspondence and afine Kac-Moody algebras, Preprint math.RT/0508382.

    Google Scholar 

  42. J.S. Milne, étale cohomology, Princeton University Press, 1980.

    Google Scholar 

  43. E. Freitag, R. Kiehl, Etale Cohomology and the Weil conjecture, Springer, 1988.

    Google Scholar 

  44. G. Laumon, Transformation de Fourier, constantes d'équations fonctionelles et conjecture de Weil, Publ. IHES 65 (1987) 131–210.

    MATH  MathSciNet  Google Scholar 

  45. A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Astérisque 100 (1982).

    Google Scholar 

  46. M. Kashiwara and P. Schapira, Sheaves on Manifolds, Springer, 1990.

    Google Scholar 

  47. S.I. Gelfand and Yu.I. Manin, Homological Algebra, Encyclopedia of Mathematical Sciences 38, Springer, 1994.

    Google Scholar 

  48. J. Bernstein, Algebraic theory of D—modules, available at http:// www.math.uchicago.edu/~arinkin/ langlands

    Google Scholar 

  49. Ch. Sorger, Lectures on moduli of principal G–bundles over algebraic curves, in School on algebraic geometry (Trieste, 1999), ICTP Lecture Notes 1, ICTP, Trieste, pp. 1–57, available at http://www.ictp.trieste.it/~pub o./lectures

    Google Scholar 

  50. G. Laumon, L. Moret-Bailly, Champs algébriques, Springer-Verlag, 2000.

    Google Scholar 

  51. A. Borel, e.a., Algebraic D—modules, Academic Press, 1987.

    Google Scholar 

  52. E. Frenkel, D. Gaitsgory and K. Vilonen, On the geometric Langlands conjecture, Journal of AMS 15 (2001) 367–417.

    MathSciNet  Google Scholar 

  53. D. Gaitsgory, On a vanishing conjecture appearing in the geometric Langlands correspondence, Ann. Math. 160 (2004) 617–682.

    Article  MATH  MathSciNet  Google Scholar 

  54. G. Laumon, Correspondance de Langlands géométrique pour les corps de fonctions, Duke Math. J. 54 (1987) 309–359.

    Article  MATH  MathSciNet  Google Scholar 

  55. G. Laumon, Faisceaux automorphes pour GLn: la première construction de Drinfeld, Preprint alg-geom/9511004.

    Google Scholar 

  56. G. Laumon, Faisceaux automorphes liés aux séries d'Eisenstein, in Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), pp. 227–281, Perspect. Math. 10, Academic Press, 1990.

    Google Scholar 

  57. D. Gaitsgory, Automorphic sheaves and Eisenstein series, Ph.D. thesis, 1997.

    Google Scholar 

  58. A. Braverman and D. Gaitsgory, Geometric Eisenstein series, Invent. Math. 150 (2002) 287–384.

    Article  MATH  MathSciNet  Google Scholar 

  59. V. Drinfeld, Talk at the DARPAWorkshop, November 2003, notes available at http://math.northwestern.edu/langlands/Meetings/03 Chgo/Drinfeld I

    Google Scholar 

  60. J. Arthur, Unipotent automorphic representations: conjectures, Asterisque 171–172 (1989) 13–71.

    MathSciNet  Google Scholar 

  61. J.-P. Serre, Algebraic Groups and Class Fields, Springer, 1988.

    Google Scholar 

  62. G. Laumon, Transformation de Fourier généralisée, Preprint alggeom/9603004.

    Google Scholar 

  63. M. Rothstein, Connections on the total Picard sheaf and the KP hierarchy, Acta Applicandae Mathematicae 42 (1996) 297–308.

    Article  MATH  MathSciNet  Google Scholar 

  64. I. Satake, Theory of spherical functions on reductive algebraic groups over p—adic fields, IHES Publ. Math. 18 (1963) 5–69.

    MathSciNet  Google Scholar 

  65. T.A. Springer, Reductive groups, in Automorphic forms, representations and L-functions, Proc. Symp. Pure Math. 33, Part 1, pp. 3–27, AMS, 1979.

    MathSciNet  Google Scholar 

  66. I. Mirković, K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Preprint math.RT/0401222.

    Google Scholar 

  67. V. Ginzburg, Perverse sheaves on a loop group and Langlands duality, Preprint alg-geom/9511007.

    Google Scholar 

  68. G. Lusztig, Singularities, character formulas, and a q—analogue of weight multiplicities, Astérisque 101 (1983) 208–229.

    MathSciNet  Google Scholar 

  69. D. Ben-Zvi and E. Frenkel, Geometric Realization of the Segal-Sugawara Construction, in Topology, geometry and quantum field theory, pp. 46–97, London Math. Soc. Lecture Note Ser. 308, Cambridge University Press, 2004 (math.AG/0301206).

    Google Scholar 

  70. A. Beilinson and J. Bernstein, A proof of Jantzen conjectures, Advances in Soviet Mathematics 16, Part 1, pp. 1–50, AMS, 1993.

    MathSciNet  Google Scholar 

  71. A. Polishchuk and M. Rothstein, Fourier transform for D-algebras, Duke Math. J. 109 (2001) 123–146.

    Article  MATH  MathSciNet  Google Scholar 

  72. T. Hausel and M. Thaddeus, Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math. 153 (2003) 197–229.

    Article  MATH  MathSciNet  Google Scholar 

  73. A. Kapustin, Topological strings on noncommutative manifolds, Preprint hep-th/0310057.

    Google Scholar 

  74. N. Hitchin, The self-duality equations on a Riemann surfaces, Proc. London Math. Soc. 55 (1987) 59–126. C. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. of AMS 1 (1988) 867–918; Non-abelian Hodge theory, Proceedings of ICM 1990, Kyoto, pp. 198–230, Springer, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  75. G. Felder, K. Gawedzki and A. Kupiainen, Spectra of Wess-Zumino-Witten models with arbitrary simple groups, Comm. Math. Phys. 117 (1988) 127–158.

    Article  MATH  MathSciNet  Google Scholar 

  76. K. Gawedzki and A. Kupiainen, Coset construction from functional integrals, Nucl. Phys. B320 (1989) 625–668. K. Gawedzki, Quadrature of conformal field theories, Nucl. Phys. B328 (1989) 733–752.

    Article  MathSciNet  Google Scholar 

  77. K. Gawedzki, Lectures on conformal field theory, in Quantum fields and strings: a course for mathematicians, Vol. 2, pp. 727–805, AMS, 1999.

    Google Scholar 

  78. E. Witten, On holomorphic factorization of WZW and coset models, Comm. Math. Phys. 144 (1992) 189–212.

    Article  MATH  MathSciNet  Google Scholar 

  79. A. Tsuchiya, K. Ueno, and Y. Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, in Integrable systems in quantum field theory and statistical mechanics, pp. 459–566, Adv. Stud. Pure Math. 19, Academic Press, Boston, 1989.

    Google Scholar 

  80. N. Hitchin, Projective connections and geometric quantizations, Comm. Math. Phys. 131 (1990) 347–380.

    Article  MATH  MathSciNet  Google Scholar 

  81. S. Axelrod, S. Della Pietra and E. Witten, Geometric quantization of Chern—Simons gauge theory, J. Di. Geom. 33 (1991) 787–902.

    MATH  MathSciNet  Google Scholar 

  82. G. Faltings, Stable G—bundles and projective connections, J. Alg. Geom. 2 (1993) 507–568.

    MATH  MathSciNet  Google Scholar 

  83. A. Beilinson and D. Kazhdan, Flat projective connections, unpublished manuscript.

    Google Scholar 

  84. K. Nagatomo and A. Tsuchiya, Conformal field theories associated to regular chiral vertex operator algebras. I. Theories over the projective line, Duke Math. J. 128 (2005) 393–471.

    Article  MATH  MathSciNet  Google Scholar 

  85. T. Eguchi and H. Ooguri, Conformal and current algebras on a general Riemann surface, Nucl. Phys. B282 (1987) 308–328.

    Article  MathSciNet  Google Scholar 

  86. E. Witten, Quantum field theory and the Jones polynomial, Comm.Math.Phys.121 (1989) 351–399.

    Article  MATH  MathSciNet  Google Scholar 

  87. D. Bernard, On the Wess-Zumino-Witten models on Riemann surfaces, Nuclear Phys. B309 (1988) 145–174.

    MathSciNet  Google Scholar 

  88. G. Felder, The KZB equations on Riemann surfaces, in Symmétries quantiques (Les Houches, 1995), pp. 687–725, North-Holland, 1998 (hepth/9609153).

    Google Scholar 

  89. K. Hori, Global aspects of gauged Wess-Zumino-Witten models, Comm. Math. Phys. 182 (1996) 1–32.

    Article  MATH  MathSciNet  Google Scholar 

  90. A. Beauville and Y. Laszlo, Un lemme de descente, C.R. Acad. Sci. Paris, Sér. I Math. 320 (1995) 335–340.

    MATH  MathSciNet  Google Scholar 

  91. V. Drinfeld and C. Simpson, B—structures on G—bundles and local triviality, Math. Res. Lett. 2 (1995) 823–829.

    MATH  MathSciNet  Google Scholar 

  92. A. Beilinson and V. Schechtman, Determinant bundles and Virasoro algebras, Comm. Math. Phys. 118 (1988) 651–701.

    Article  MATH  MathSciNet  Google Scholar 

  93. A. Beilinson, B. Feigin and B. Mazur, Introduction to algebraic field theory on curves, unpublished manuscript.

    Google Scholar 

  94. V. Kac, Infinite-dimensional Lie Algebras, Third Edition. Cambridge University Press, 1990.

    Google Scholar 

  95. U. Lindström and M. Zabzine, Tensionless Strings, WZW Models at Critical Level and Massless Higher Spin Fields, Phys. Lett. B584 (2004) 178–185.

    Google Scholar 

  96. I. Bakas and C. Sourdis, On the tensionless limit of gauged WZW models, JHEP 0406 (2004) 049; Aspects of WZW models at critical level, Fortsch. Phys. 53 (2005) 409–417.

    Article  MathSciNet  Google Scholar 

  97. M. Wakimoto, Fock representations of afine Lie algebra A 1 (1), Comm. Math. Phys. 104 (1986) 605–609.

    Article  MATH  MathSciNet  Google Scholar 

  98. B. Feigin and E. Frenkel, A family of representations of afine Lie algebras, Russ. Math. Surv. 43 (1988) no. 5, 221–222; afine Kac-Moody Algebras and semi-Infinite flag manifolds, Comm. Math. Phys. 128 (1990) 161–189.

    Article  MATH  MathSciNet  Google Scholar 

  99. A. Malikov, V. Schechtman and A. Vaintrob, Chiral de Rham complex, Comm. Math. Phys. 204 (1999) 439–473.

    Article  MATH  MathSciNet  Google Scholar 

  100. E. Witten, Two-Dimensional Models With (0,2) Supersymmetry: Perturbative Aspects, Preprint hep-th/0504078.

    Google Scholar 

  101. N. Nekrasov, Lectures on curved beta-gamma systems, pure spinors, and anomalies, Preprint hep-th/0511008.

    Google Scholar 

  102. Vl.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in 2 D statistical models, Nucl. Phys. B240 (1984) 312–348.

    Article  MathSciNet  Google Scholar 

  103. C. Vafa and E. Zaslow, eds., Mirror symmetry, Clay Mathematics Monographs, vol. 1, AMS 2004.

    Google Scholar 

  104. A. Zamolodchikov, Integrable field theory from conformal field theory, in Integrable systems in quantum field theory and statistical mechanics, pp. 641–674, Adv. Stud. Pure Math. 19, Academic Press, 1989.

    Google Scholar 

  105. V. Fateev and S. Lykyanov, The models of two-dimensional conformal quantum field theory with Zn symmetry, Int. J. Mod. Phys. A3 (1988) 507–520.

    MathSciNet  Google Scholar 

  106. E. Frenkel and D. Gaitsgory, D-modules on the afine Grassmannian and representations of afine Kac-Moody algebras, Duke Math. J. 125 (2004) 279–327.

    Article  MATH  MathSciNet  Google Scholar 

  107. N. Hitchin, Stable bundles and integrable systems, Duke Math. J. 54 (1987) 91–114.

    Article  MATH  MathSciNet  Google Scholar 

  108. G. Laumon, Un analogue global du cône nilpotent, Duke Math. J. 57 (1988) 647–671.

    Article  MATH  MathSciNet  Google Scholar 

  109. E. Frenkel, Gaudin model and opers, in Infinite Dimensional Algebras and Quantum Integrable Systems, eds. P. Kulish, e.a., Progress in Math. 237, pp. 1–60, Birkhäuser, 2005 (math.QA/0407524).

    Google Scholar 

  110. E. Frenkel, Opers on the projective line, flag manifolds and Bethe Ansatz, Mosc. Math. J. 4 (2004) 655–705 (math.QA/0308269).

    MATH  MathSciNet  Google Scholar 

  111. V.G. Drinfeld, Two-dimensional—adic representations of the Galois group of a global field of characteristic p and automorphic forms on GL(2), J. Sov. Math. 36 (1987) 93–105.

    Article  Google Scholar 

  112. J. Heinloth, Coherent sheaves with parabolic structure and construction of Hecke eigensheaves for some ramified local systems, Ann. Inst. Fourier (Grenoble) 54 (2004) 2235–2325.

    MATH  MathSciNet  Google Scholar 

  113. B. Enriquez, B. Feigin and V. Rubtsov, Separation of variables for Gaudin-Calogero systems, Compositio Math. 110 (1998) 1–16.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Frenkel, E. (2007). Lectures on the Langlands Program and Conformal Field Theory. In: Cartier, P., Moussa, P., Julia, B., Vanhove, P. (eds) Frontiers in Number Theory, Physics, and Geometry II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30308-4_11

Download citation

Publish with us

Policies and ethics