Skip to main content

Allelopathy in Harmful Algae: A Mechanism to Compete for Resources?

  • Chapter
Ecology of Harmful Algae

Part of the book series: Ecological Studies ((ECOLSTUD,volume 189))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolf JE, Krupatkina DN, Place AR, Brown PJP, Lewitus AJ (2004) The allelopathic specificity of Karlodinium micrum toxins (Karlotoxins). In: 11th Int Conf Harmful Algal Blooms, Cape Town, S Africa, Abstracts, p 52

    Google Scholar 

  • Ahmed MS, Khan S, Arakawa O, Onoue Y (1995) Properties of hemagglutinins newly separated from toxic phytoplankton. Biochem Biophys Acta 1243:509–512

    PubMed  Google Scholar 

  • Arzul G, Seguel M, Guzman L, Erard-Le Denn E (1999) Comparison of allelopathic properties in three toxic Alexandrium species. J Exp Mar Biol Ecol 232:285–295

    Article  Google Scholar 

  • Barreiro A, Guisande C, Maneiro I, Lien TP, Legrand C, Tamminen T, Lehtinen S, Uronen P, Granéli E (2005) Relative importance of the different negative effects of the toxic haptophyte Prymnesium parvum on Rhodomonas salina and Brachionus plicatilis. Aquat Microb Ecol 38:259–267

    Google Scholar 

  • Brand LE (1984) The salinity tolerance of forty-six marine phytoplankton isolates. Est Coast Shelf Sci 18:543–556

    Article  CAS  Google Scholar 

  • Chiang I-Z, Huang W-Y, Wu J-T (2004) Allelochemicals of Botryococcus braunii (Chlorophyceae). J Phycol 40:474–480

    Article  CAS  Google Scholar 

  • Echigoya R, Rhodes L, Oshima Y, Satake M (2005) The structures of five new antifungal and hemolytic amphidinol analogs from Amphidinium carterae collected in New Zealand. Harmful Algae 4:383–389

    Article  CAS  Google Scholar 

  • Edvardsen B, Paasche E (1998) Bloom dynamics and physiology of Prymnesium and Chrysochromulina In: Anderson DM, Cembella AD, Hallegraeff GM (eds) Physiological ecology of harmful algal blooms. NATO ASI Series 41. Springer, Berlin Heidelberg New York, pp 193–208

    Google Scholar 

  • Einhellig FA (1995) Allelopathy: current status and future goals. In: Derjik EV, Dakshini KMM, Einhellig FA (eds) Allelopathy: organisms, processes, and applications. ACS Symp Ser 582, pp 1–24

    Google Scholar 

  • Emura A, Matsuyama Y, Oda T (2004) Evidence for the production of a novel proteinaceous hemolytic exotoxin by dinoflagellate Alexandrium taylori. Harmful Algae 3:29–37

    Article  CAS  Google Scholar 

  • Fistarol GO, Legrand C, Granéli E (2003) Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar Ecol Prog Ser 255:115–125

    Google Scholar 

  • Fistarol GO, Legrand C, Selander E, Hummert C, Stolte W, Granéli E (2004a) Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat Microb Ecol 35:45–56

    Google Scholar 

  • Fistarol GO, Legrand C, Rengefors K, Granéli E (2004b) Temporary cyst formation in phytoplankton: a response to allelopathic competitors? Env Microbiol 6:791–798

    Article  Google Scholar 

  • Fistarol GO, Legrand C, Granéli E (2005) Allelopathic effect on a nutrient-limited phytoplankton species. Aquat Microb Ecol 41:153–161

    Google Scholar 

  • Gentien P, Arzul G (1990) Exotoxin production by Gyrodinium cf. aureolum (Dinophyceae). J Mar Biol Ass UK 70:571–581

    Article  CAS  Google Scholar 

  • Granéli E, Johansson N (2003) Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N-or P-deficient conditions. Harmful Algae 2:135–145

    Article  CAS  Google Scholar 

  • Hagström JA, Granéli E (2005) Removal of Prymnesium parvum (Haptophyceae) cells under different nutrient conditions by clay. Harmful Algae 4:249–260

    Article  Google Scholar 

  • Hansen PJ (1989) The red tide dinoflagellate Alexandrium tamarense: effects on behaviour and growth of a tintinnid ciliate. Mar Ecol Prog Ser 53:105–116

    Google Scholar 

  • Hansen PJ (2002) The role of pH and CO2 limitation in marine plankton: implications for species succession. Aquat Microb Ecol 28:279–288

    Google Scholar 

  • Hansen PJ, Cembella AD, Moestrup Ø (1992) The marine dinoflagellate Alexandrium ostenfeldii: paralytic shellfish toxin concentration, composition, and toxicity to a tintinnid ciliate. J Phycol 28:597–603

    Article  CAS  Google Scholar 

  • Holdway PA, Watson RA, Moss B (1978) Aspects of the ecology of Prymnesium parvum (Haptophyta) and water chemistry in the Norfolk Broads England. Freshwater Biol 8:295–311

    Article  CAS  Google Scholar 

  • Igarashi T, Aritake S, Yasumoto T (1998) Biological activities of prymnesin-2 isolated from a red tide alga Prymnesium parvum. Nat Toxins 6:35–41

    Article  PubMed  CAS  Google Scholar 

  • Johansson N, Granéli E (1999a) Influence of different nutrient conditions on cell density, chemical composition and toxicity of Prymnesium parvum (Haptophyta) in semicontinuous cultures. J Exp Mar Biol Ecol 239:243–258

    Article  CAS  Google Scholar 

  • Johansson N, Granéli E (1999b) Cell density, chemical composition and toxicity of Chrysochromulina polylepis (Haptophyta) in relation to different N:P supply ratios. Mar Biol 135:209–217

    Article  CAS  Google Scholar 

  • Kamiyama T (1997) Growth and grazing responses of tintinnid ciliates feeding on the toxic dinoflagellate Heterocapsa circularisquama. Mar Biol 128:509–515

    Article  Google Scholar 

  • Kamiyama T, Arima S (1997) Lethal effects of the dinoflagellate Heterocapsa circularisquama upon tintinnids ciliates. Mar Ecol Prog Ser 160:27–33

    Google Scholar 

  • Kozakai H, Oshima Y, Yasumoto T (1982) Isolation and structural elucidation of hemolysin from the phytoflagellate Prymnesium parvum. Agric Biol Chem 46:233–236

    CAS  Google Scholar 

  • Kubanek J, Prince E, Hicks MK, Naar J, Villareal T (2005) Does the Florida red tide dinoflagellate use allelopathy to outcompete other phytoplankton? Limnol Oceanogr 50:883–895

    Article  Google Scholar 

  • Larsen A, Bryant S (1998) Growth rate and toxicity of Prymnesium parvum and Prymnesium patelliferum (Haptophyta) in response to changes in salinity, light and temperature. Sarsia 83:409–418

    Google Scholar 

  • Legrand C, Rengefors K, Granéli E, Fistarol GO (2003) Allelopathy in phytoplankton — biochemical, ecological and evolutionary aspects. Phycologia 42:406–419

    Article  Google Scholar 

  • Lundholm N, Hansen PJ, Kotaki Y (2005) Lack of allelopathy effects of the domoic acid producing marine diatom Pseudo-nitzschia multiseries. Mar Ecol Prog Ser 288:21–33

    Google Scholar 

  • Moestrup Ø (1994) Economic aspects: ‘blooms’ nuisance species, and toxins. In: Green JC, Leadbeater BSC (eds) The haptophyte algae. Clarendon Press, Oxford, pp 265–285

    Google Scholar 

  • Mortensen AM (1985) Massive fish mortalities in the Faroe Islands caused by a bloom of Gonyaulax excavata. In: Anderson DM, White AW, Baden DG (eds) Toxic dinoflagellates. Elsevier, New York, pp 165–170

    Google Scholar 

  • Myklestad S (1977) Production of carbohydrates by marine phytoplanktonic diatoms. II Influence of the N/P ratio in the growth medium on the assimilation ratio, growth rate, and production of cellular and extracellular carbohydrates by Chaetoceros affinis var. Willei (Gran) Hustedt and Skeletonema costatum (Grev.) Cleve. J Exp Mar Biol Ecol 29:161–179

    Article  CAS  Google Scholar 

  • Myklestad S, Ramlo B, Hestman S (1995) Demonstration of strong interaction between the flagellate Chrysochromulina polylepis (Prymnesiophyceae) and a marine diatom. In: Lassus P, Arzul G, Le Denn EE, Gentien P, Marcaillou C (eds) Harmful marine algal blooms. Lavoisier Intercept, Paris, pp 633–638

    Google Scholar 

  • Pflugmacher S (2002) Possible allelopathic effects of cyanotoxins, with reference to Microcystin-LR, in aquatic ecosystems. Environ Toxicol 17:407–413

    Article  PubMed  CAS  Google Scholar 

  • Rizvi SJH, Rizvi V (eds) (1992) Allelopathy: basic and applied aspect. Chapman & Hall, London, 480 pp

    Google Scholar 

  • Sasaki M, Shida T, Tachibana K (2001) Synthesis and stereochemical confirmation of the HI/JK ring system of prymnesins, potent hemolytic and ichthyotoxic glycoside toxins isolated from the red tide alga. Tetrahedron Lett 42:5725–5728

    Article  CAS  Google Scholar 

  • Schmidt LE, Hansen PJ (2001) Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and ph. Mar Ecol Prog Ser 216:67–81

    CAS  Google Scholar 

  • Shilo M (1967) Formation and mode of action of algal toxin. Bacteriol Rev 31:180–193

    PubMed  CAS  Google Scholar 

  • Shilo M (1981) The toxic principles of Prymnesium parvum. In: Carmichael WW (ed) The water environment. Algal toxins and health. Plenum Press, New York, pp 37–47

    Google Scholar 

  • Shilo M, Aschner M (1953) Factors governing the toxicity of cultures containing the phytoflagellate Prymnesium parvum Carter. J Gen Microbiol 36:333–343

    Google Scholar 

  • Simonsen S, Moestup Ø (1997) Toxicity tests in eight species of Chrysochromulina (Haptophyta). Can J Bot 75:129–136

    Article  CAS  Google Scholar 

  • Skovgaard A, Hansen PJ (2003) Food uptake in the harmful alga Prymnesium parvum mediated by excreted toxins. Limnol Oceanogr 48:1161–1166

    Article  CAS  Google Scholar 

  • Soeder CJ, Bolze A (1981) Sulphate deficiency stimulates release of dissolved organic matter in synchronous cultures of Scenedesmus obliquus. Physiol Plant 52:233–238

    Article  CAS  Google Scholar 

  • Subba Rao DV, Pan Y, Smith SJ (1995) Allelopathy between Rhizosolenia alata (Brightwell) and the toxigenic Pseudo-nitzschia pungens f. multiseries (Hasle). In: Lassus P, Arzul G, Le Denn EE, Gentien P, Marcaillou C (eds) Harmful marine algal blooms. Lavoisier Intercept Ltd, Paris, pp 681–686

    Google Scholar 

  • Sugg LM, VanDolah FM (1999) No evidence for an allelopathic role of okadaic acid among ciguatera-associated dinoflagellates. J Phycol 35:93–103

    Article  CAS  Google Scholar 

  • Suikkanen S, Fistarol GO, Granéli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101

    Article  Google Scholar 

  • Suikkanen S, Fistarol GO, Granéli E (2005) Effects of cyanobacterial allelochemicals on a natural plankton community. Mar Ecol Prog Ser 287:1–9

    Google Scholar 

  • Tillmann U (2003) Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum. Aquat Microb Ecol 32:73–84

    Google Scholar 

  • Tillmann U (2004) Interactions between planktonic microalgae and protozoan grazers. J Eukaryot Microbiol 51:156–168

    Article  PubMed  Google Scholar 

  • Tillmann U, John U (2002) Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar Ecol Prog Ser 230:47–58

    CAS  Google Scholar 

  • Uchida T (2001) The role of cell contact in the life cycle of some dinoflagellate species. J Plankton Res 23:889–891

    Article  Google Scholar 

  • Ulitzur S, Shilo M (1964) A sensitive assay system for the determination of the ichthyotoxicity of Prymnesium parvum. J Gen Microbiol 36:161–169

    PubMed  CAS  Google Scholar 

  • Uronen P, Lehtinen S, Legrand C, Kuuoppo P, Tamminen T (2005) Haemolytic activity and allelopathy of the haptophyte Prymnesium parvum in nutrient-limited and balanced growth conditions. Mar Ecol Prog Ser 299:137–148

    Google Scholar 

  • von Elert E, Jüttner F (1997) Phosphorus limitation and not light controls the extracellular release of allelopathic compounds by Trichormus doliolum (Cyanobacteria). Limnol Oceanogr 42:1976–1802

    Google Scholar 

  • Windust AJ, Wright JLC, McLachlan JL (1996) The effects of the diarrhetic shellfish poisoning toxins, okadaic acid and dinophysistoxin-1, on growth of microalgae. Mar Biol 126:19–25

    Article  CAS  Google Scholar 

  • Windust AJ, Quilliam MA, Wright JLC, McLachlan JL (1997) Comparative toxicity of the diarrhetic shellfish poisons, okadaic acid, okadaic acid diol-ester and dinophysistoxin-4, to the diatom Thalassiosira weissflogii. Toxicon 35:1591–1603

    Article  PubMed  CAS  Google Scholar 

  • Yasumoto T, Underdahl B, Aune T, Hormazabal V, Skulberg OM, Oshima Y (1990) Screening for hemolytic and ichthyotoxic components of Chrysochromulina polylepis and Gyrodinium aureolum from Norwegian coastal waters. In: Granéli E, Sundström B, Edler L, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, pp 436–440

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Granéli, E., Hansen, P.J. (2006). Allelopathy in Harmful Algae: A Mechanism to Compete for Resources?. In: Granéli, E., Turner, J.T. (eds) Ecology of Harmful Algae. Ecological Studies, vol 189. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-32210-8_15

Download citation

Publish with us

Policies and ethics