Skip to main content

Nanoscale Studies of Domain Walls in Epitaxial Ferroelectric Thin Films

  • Chapter
Physics of Ferroelectrics

Part of the book series: Topics in Applied Physics ((TAP,volume 105))

Abstract

Nanoscale ferroelectric domains in epitaxial Pb(Zr0.2Ti0.8)O3 thin films were investigated using atomic force microscopy to allow the static roughness configuration and dynamic response of ferroelectric domain walls in these materials to be accessed. The observed dependence of domain size on writing time revealed a two-step switching process in which nucleation under the atomic force microscope tip is followed by radial domain growth. We obtained a non-linear dependence of domain wall velocity on the electric field, v ∝ exp−(1∕E)μ, characteristic of a creep process. The domain wall motion was analyzed both in the context of stochastic nucleation in a periodic potential as well as that of an elastic manifold in a disorder potential, in better agreement with the dimensionality of the system and the values of the dynamic exponent ∼ 0.6. Independent measurements of domain wall roughness in the same films revealed a power law growth of the correlation function of relative displacements B(L) ∝ L with ζ ∼ 0.26 at short length scales L, followed by an apparent saturation at large L. These results give rise to a clear physical picture of domain walls in ferroelectrics as elastic sheets in the presence of “random-bond” disorder, and where dipolar interactions play an important role, effectively increasing the dimensionality of the system to 2.5, in agreement with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. F. Scott, C. A. P. {de Araujo}: Ferroelectric memories, Science 246, 1400 (1989)

    Article  CAS  Google Scholar 

  • R. Waser, A. R{\ü}diger: Ferroelectrics: {Pushing} towards the digital storage limit, Nature Mater. 3, 81 (2004)

    Article  CAS  Google Scholar 

  • A. K. S. Kumar, P. Paruch, J. M. Triscone, W. Daniau, S. Ballandras, L. Pellegrino, D. Marr{\'e}, T. Tybell: High-frequency surface acoustic wave device based on thin-film piezoelectric interdigital transducers, Appl. Phys. Lett. 85, 1757 (2004)

    Article  CAS  Google Scholar 

  • C. Caliendo, I. Fratoddi, M. V. Russo: Sensitivity of a platinum-polyyne-based sensor to low relative humidity and chemical vapors, Appl. Phys. Lett. 80, 4849 (2002)

    Article  CAS  Google Scholar 

  • T. Giamarchi, A. B. Kolton, A. Rosso: Dynamics of disordered elastic systems, in M. C. Miguel, J. M. Rubi (Eds.): Jamming, Yielding and Irreversible Deformation in Condensed Matter (Springer, Berlin 2006) p. 91, cond-mat/0503437

    Google Scholar 

  • G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, V. M. Vinokur: Vortices in high-temperature superconductors, Rev. Mod. Phys. 66, 1125 (1994)

    Article  CAS  Google Scholar 

  • T. Tybell, P. Paruch, T. Giamarchi, J.-M. Triscone: Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films, Phys. Rev. Lett. 89, 097601 (2002)

    Article  CAS  Google Scholar 

  • P. Paruch, T. Giamarchi, T. Tybell, J.-M. Triscone: Nanoscale studies of domain wall motion in ferroelectric thin films, J. Appl. Phys. 100, 051608 (2006)

    Google Scholar 

  • P. Paruch, T. Giamarchi, J.-M. Triscone: Domain wall roughness in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films, Phys. Rev. Lett. 94, 197601 (2005)

    Article  CAS  Google Scholar 

  • B. Meyer, D. Vanderbilt: Ab initio study of ferroelectronic domain walls in PbTiO3, Phys. Rev. B 65, 104111 (2002)

    Article  Google Scholar 

  • T. Nattermann, S. Scheidl: Vortex glass phases in type-{II} superconductors, Adv. Phys. 49, 607 (2000)

    Article  CAS  Google Scholar 

  • T. Giamarchi, S. Bhattacharya: Vortex phases, in C. Berthier, et al. (Eds.): High Magnetic Fields: {Applications} in Condensed Matter Physics and Spectroscopy (Springer, Berlin 2002) p. 314, cond-mat/0111052

    Google Scholar 

  • G. Gr{\ü}ner: The dynamics of charge density waves, Rev. Mod. Phys. 60, 1129 (1988)

    Article  Google Scholar 

  • T. Nattermann, S. Brazovskii: Pinning and sliding of driven elastic systems: {From} domain walls to charge density waves, Adv. Phys. 53, 177 (2004)

    Article  Google Scholar 

  • E. Y. Andrei, G. Deville, D. C. Glattli, F. I. B. Williams, E. Paris, B. Etienne: Observation of a magnetically induced wigner solid, Phys. Rev. Lett. 60, 2765 (1988)

    Article  CAS  Google Scholar 

  • T. Giamarchi: Electronic glasses, in S. I. {di Fisica} (Ed.): Quantum Phenomena in Mesoscopic System (IOS, Amsterdam 2003) cond-mat/0403531

    Google Scholar 

  • M. Kardar: Dynamic scaling phenomena in growth processes, Physica B 221, 60 (1996)

    Article  CAS  Google Scholar 

  • D. Wilkinson, J. F. Willemsen: Invasion percolation: {A} new form of percolation theory, J. Phys. A 16, 3365 (1983)

    Article  Google Scholar 

  • S. Lemerle, J. Ferr{\'e}, C. Chappert, V. Mathet, T. Giamarchi, P. {Le Doussal}: Domain wall creep in an ising ultrathin magnetic film, Phys. Rev. Lett. 80, 849 (1998)

    Article  CAS  Google Scholar 

  • V. Repain, M. Bauer, J. P. Jamet, J. Ferr{\'e}, A. Mougin, C. Chappert, H. Bernas: Creep motion of a magnetic wall: {Avalanche} size divergence, Europhys. Lett. 68, 460 (2004)

    Article  CAS  Google Scholar 

  • D. A. Huse, C. L. Henley: Pinning and roughening of domain walls in ising systems due to random impurities, Phys. Rev. Lett. 54, 2708 (1985)

    Article  Google Scholar 

  • M. Kardar, D. R. Nelson: Commensurate-incommensurate transitions with quenched random impurities, Phys. Rev. Lett. 55, 1157 (1985)

    Article  CAS  Google Scholar 

  • D. A. Huse, C. L. Henley, D. S. Fisher: Huse, {H}enley and {F}isher respond., Phys. Rev. Lett. 55, 2924 (1985)

    Article  Google Scholar 

  • D. E. Wolf, J. Kert{\'e}sz: Surface width exponents for three- and four-dimensional eden growth, Europhys. Lett. 4, 651 (1987)

    CAS  Google Scholar 

  • B. M. Forrest, L. H. Tang: Surface roughening in a hypercube-stacking model, Phys. Rev. Lett. 64, 1405 (1990)

    Article  Google Scholar 

  • P. W. Anderson, Y. B. Kim: Hard superconductivity: {Theory} of the motion of {A}brikosov flux lines, Rev. Mod. Phys. 36, 39 (1964)

    Article  Google Scholar 

  • L. B. Ioffe, V. M. Vinokur: Dynamics of interfaces and dislocations in disordered media, J. Phys. C 20, 6149 (1987)

    Article  Google Scholar 

  • T. Nattermann: Interface roughening in systems with quenched random impurities, Europhys. Lett. 4, 1241 (1987)

    CAS  Google Scholar 

  • P. Chauve, T. Giamarchi, P. {Le Doussal}: Creep and depinning in disordered media, Phys. Rev. B 62, 6241 (2000)

    Article  CAS  Google Scholar 

  • D. T. Fuchs, E. Zeldov, T. Tamegai, S. Ooi, M. Rappaport, H. Shtrikman: Possible new vortex matter phases in O8, Phys. Rev. Lett. 80, 4971 (1998)

    Article  CAS  Google Scholar 

  • W. J. Merz: Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals, Phys. Rev. 95, 690 (1954)

    Article  CAS  Google Scholar 

  • F. Fatuzzo, W. J. Merz: Switching mechanism in triglycine sulfate and other ferroelectrics, Phys. Rev. 116, 61 (1959)

    Article  CAS  Google Scholar 

  • R. C. Miller, G. Weinreich: Mechanism for the sidewise motion of \unit{180}{\degree} domain walls in barium titanate, Phys. Rev. 117, 1460 (1960)

    Article  CAS  Google Scholar 

  • V. Likodimos, M. Labardi, M. Allegrini: Kinetics of ferroelectric domains investigated by scanning force microscopy, Phys. Rev. B 61, 14440 (2000)

    Article  CAS  Google Scholar 

  • V. Likodimos, M. Labardi, M. Allegrini: Domain pattern formation and kinetics on ferroelectric surfaces under thermal cycling using scanning force microscopy, Phys. Rev. B 66, 024104 (2002)

    Article  Google Scholar 

  • D. Damjanovic: Logarithmic frequency dependence of the piezoelectric effect due to pinning of ferroelectric-ferroelastic domain walls, Phys. Rev. B 55, R649 (1997)

    Article  CAS  Google Scholar 

  • D. V. Taylor, D. Damjanovic: Domain wall pinning contribution to the nonlinear dielectric permittivity in {P}b({Z}r,{T}i){O}_3 thin films, Appl. Phys. Lett. 73, 2045 (1998)

    Article  CAS  Google Scholar 

  • V. Mueller, Y. Shchur, H. Beige, S. Mattauch, J. Glinnemann, G. Heger: Dielectric dispersion due to weak domain wall pinning in PO4, Phys. Rev. B 65, 134102 (2002)

    Article  Google Scholar 

  • P. Paruch, T. Tybell, J.-M. Triscone: Nanoscale control of ferroelectric polarization and domain size in epitaxial PbZr0.2Ti0.8O3 thin films, Appl. Phys. Lett. 79, 530 (2001)

    Article  CAS  Google Scholar 

  • K. Terabe, M. Nakamura, S. Takekawa, K. Kitamura, S. Higuchi, Y. Gotoh, Y. Cho: Microscale to nanoscale ferroelectric domain and surface engineering of a near-stoichiometric LiNbO3 crystal, Appl. Phys. Lett. 82, 433 (2003)

    Article  CAS  Google Scholar 

  • S. V. Kalinin, D. A. Bonnell: Local potential and polarization screening on ferroelectric surfaces, Phys. Rev. B 63, 125411 (2001)

    Article  Google Scholar 

  • T. Emig, T. Nattermann: Disorder driven roughening transitions of elastic manifolds and periodic elastic media, Eur. Phys. J. B 8, 525 (1999)

    Article  CAS  Google Scholar 

  • A. I. Larkin: Effect of inhomogeneities on structure of mixed state of superconductors, Sov. Phys. JETP 31, 784 (1970)

    Google Scholar 

  • A. I. Larkin, Y. N. Ovchinnikov: Pinning in type-{II} superconductors, J. Low Temp. Phys 34, 409 (1979)

    Article  Google Scholar 

  • S. P{\ö}ykk{\ö}, D. J. Chadi: Ab initio study of \unit{180}{\degree} domain wall energy and structure in PbTiO3, Appl. Phys. Lett. 75, 2830 (1999)

    Article  Google Scholar 

  • T. Nattermann: The incommensurate-commensurate transition in random-field model, J. Phys. C 16, 4125 (1983)

    Article  Google Scholar 

  • M. Molotskii, A. Agronin, P. Urenski, M. Shvebelman, G. Rosenman, Y. Rosenwaks: Ferroelectric domain breakdown, Phys. Rev. Lett. 90, 107601 (2003)

    Article  Google Scholar 

  • P. Paruch, J.-M. Triscone: High-temperature ferroelectric domain stability in epitaxial PbZr0.2Ti).8O3 thin films, Appl. Phys. Lett. 88, 162907 (2006)

    Article  Google Scholar 

  • R. J. Rodriguez, A. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, K. Kitamura: Domain growth kinetics in lithium niobate single crystals studied by piezoresponse force microscopy, Appl. Phys. Lett. 012906 (2005)

    Google Scholar 

  • T. Braun, W. Kleeman, J. Dec, P. A. Thomas: Creep and relaxation dynamics of domain walls in periodically poled KTiOPO4, Phys. Rev. Lett. 94, 117601 (2005)

    Article  Google Scholar 

  • D. R. Taylor, J. T. Love, G. J. Topping, J. G. A. Dane: Crossover from pure to random-field critical susceptibility in KH2As_xP1-xO4, Phys. Rev. B 72, 052109 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrycja Paruch .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paruch, P., Giamarchi, T., Triscone, JM. (2007). Nanoscale Studies of Domain Walls in Epitaxial Ferroelectric Thin Films. In: Physics of Ferroelectrics. Topics in Applied Physics, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34591-6_8

Download citation

Publish with us

Policies and ethics