Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 88))

Abstract

A large number of different deposition techniques are used for the production of thin films for optical applications, as outlined in chapter ‘Thin Film Deposition Techniques’ by H. K. Pulker. The two most important categories are physical vapour deposition (PVD), namely thermal vaporisation and sputtering, and chemical vapour deposition (CVD). It is obvious, that for each deposition technique suitable coating materials are required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertinetti N, Minden HAT (1996) Granularity in ion-beam-sputtered Ti02 films. Appl. Opt 35: 5620–5625

    Article  ADS  Google Scholar 

  • Alvisi M, De Nuncio G, Di Gulio M, Ferrara MC, Perrone MR, Protopapa L, Vasanelli L (1999) Deposition of Si02 films with high laser damage thresholds by ion-assisted electron-beam evaporation. Appl. Opt. 38: 1237–1243

    Article  ADS  Google Scholar 

  • Anderson O, Ottermann C (1997) Silicon oxides. In: Bach H, Krause D (eds) Thin films on glass. Springer, Berlin Heidelberg, pp 161–173

    Google Scholar 

  • Anderson O, Bange K, Ottermann C (1997) Titanium oxide. In Bach H, Krause D (eds) Thin films on glass. Springer, Berlin Heidelberg, pp 137–161

    Google Scholar 

  • Andre P, Poupinet L, Ravel G (2000) Evaporation and ion assisted deposition of Hf02 coatings: Some key points for high power applications. J. Vac. Sci. Technol. A 18: 2372–2377

    Article  ADS  Google Scholar 

  • Balzers Patent- und Beteiligungs-AG (1967) Lichtabsorbierendes Sonnenbrillenglas. Schweizer Patent 447 476

    Google Scholar 

  • Bange K (1997) Properties and characterisation of dielectric thin films. In: Bach H, Krause D (eds) Thin films on glass. Springer, Berlin Heidelberg, pp 101–225

    Google Scholar 

  • Bendavid A, Martin PJ, Takikawa H (2000) Deposition and modification of titanium dioxide films by filtered arc deposition. Thin Solid films 360: 241–249

    Article  ADS  Google Scholar 

  • Bennett JM, Pelletier E, Albrand G, Borgogno JP, Lazarides B, Carniglia CK, Schmell RA, Allen TH, Tuttle-Hart T, Guenther KH, Saxer A (1989) Comparison of the properties of titanium dioxide films prepared by various techniques. Appl. Opt. 28: 3303–3317

    ADS  Google Scholar 

  • Bernitzki H, Lauth H, Thielsch R, Blaschke H, Kaiser N, Mann K (1999) Current status of radiation resistance of dielectric mirrors in the DUV. SPIE 3578

    Google Scholar 

  • Bin F, Zhang F (1997) Study on optical properties of PbTe and ZnSe at low temperature. J. of Shanghai Jiaotong Univ. 31: 69–71

    Google Scholar 

  • Brunet-Bruneau A, Vuye G, Frigerio JM, Abeles F, Rivory J, Berger M, Chaton P (1996) Infrared ellipsometry investigation of SiOxNy thin films on silicon. Appl. Opt. 35: 4998–5004

    Article  ADS  Google Scholar 

  • Canon Kabushiki Kaisha (1976) Three layer antireflection film US Pat. 3 934 961

    Google Scholar 

  • Chen JS, Chao S, Kao JS, Lai GR, Wang WH (1997) Substrate-dependent optical absorption characteristics of titanium dioxide thin films. Appl. Opt. 36: 4403–4408

    Article  ADS  Google Scholar 

  • Cho HJ, Hwangbo CK (1996) Optical inhomogeneity and microstructure of Zr02 thin films prepared by ion-assisted deposition. Appl. Opt. 35: 5545–5552

    Article  ADS  Google Scholar 

  • Cowell R (1996) Durable optical coatings for energetic UV laser sources. SPIE 2703:369–374

    Article  ADS  Google Scholar 

  • De CK, Misra NK, Gosh T B (1995) Preparation and structural characterisation of ZnSe thin films by x-ray diffraction technique. Indian J. Phys.,A 69A: 261–266

    Google Scholar 

  • Dods SRA, Zhang Z, Ogura M (1999) Highly dispersive mirror in Ta205/Si02 for femtosecond lasers designed by inverse spectral theory. Appl. Opt. 38: 4711–4719

    Article  ADS  Google Scholar 

  • Edlinger J, Ramm J, Pulker HK (1989) Properties of ion-plated Nb2O5 films. Thin Solid Filmsl75: 207–212

    Google Scholar 

  • Edlou SM, Smajjkiewicz A, Al-Jumaily GA (1993) Optical properties and environmental stability of oxide coatings deposited by reactive sputtering. Appl. Opt. 32: 5601–5605

    Article  ADS  Google Scholar 

  • Friz M, Koenig F, and Feiman S. (1992) New materials for production of optical coatings. Proc. SVC 35th Ann. Techn. Conf 1992, 143–149

    Google Scholar 

  • Friz M, Schallenberg UB, Laux S. (1997) Plasma ion assisted deposition of medium and high refractive index thin films. Proc. SVC 40th Ann. Techn. Conf. 1997: 280–292

    Google Scholar 

  • Ganner P (1986) Medium-Index mixed-oxide layers for use in AR-coatings. Proc. SPIE 652:69–76

    Article  ADS  Google Scholar 

  • Glaser HJ (1990) Dunnfilmtechnologie auf Flachglas. Verlag Karl Hoffmann, Schorndorf

    Google Scholar 

  • Goldflnger P, Jeunehomme M (1963) Mass spectrometric and Knudsen cell vaporization studies of 2B-6A compounds. Trans. Far. Soc. 59: 2851–2867

    Article  Google Scholar 

  • Hawkins GJ, Hunneman R, Sherwood R, Barrett BM (2000) Infrared filters and coatings for the High Resolution Dynamics Limb Sounder (6–18 urn) Appl. Optics 39: 5221–5230

    ADS  Google Scholar 

  • Heitmann W, Ritter E (1968) Production and properties of vacuum evaporated films of Thorium fluoride. Appl. Optics 7:307–309

    Article  ADS  Google Scholar 

  • Hussain Z, (1999) Vacuum temperature-dependent ellipsometric studies on W03 thin films. Appl. Opt. 38:7112–7127

    Article  ADS  Google Scholar 

  • Izawa T, Yamamura N, Uchimura R, Yakuoh T (1994) Damage thresholds and optical stabilities of fluoride HR coatings for 193 nm. SPIE 2114:297–308

    Article  ADS  Google Scholar 

  • Klinger RE, Carniglia CK (1985) Optical and crystalline inhomogeneity in evaporated zir-conia films. Appl. Opt. 24: 3184–3187

    Article  ADS  Google Scholar 

  • Koenig F, Friz M (1994) Development of medium and high refractive index coating materials for the visible and UV spectral range. Proc. SVC 37th Ann. Techn. Conf. 1994: 118–121

    Google Scholar 

  • Kolbe J, Miiller H, Schink H, Welling H, Ebert J (1990) Laser induced damage thresholds of dielectric coatings at 193 nm and correlations to optical constants and process parameters. NIST Spec. Publ. 801:404–416

    Google Scholar 

  • Kolbe J, Kessler H, Hofmann T, Meyer F, Schink H, Ristau D (1991) Optical properties and damage thresholds of dielectric UV/VUV coatings deposited by conventional evaporation, IAD and IBS. SPIE 1624:221–235

    Article  ADS  Google Scholar 

  • Kraus T, Rheinberger P (1962) Use of rare earth metal in vaporizing metals and metal oxides. U.S. Patent 3 034 924

    Google Scholar 

  • Kulkarni AK, Lim T, Khan M, Schulz KH, (1998) Electrical, optical and structural properties of indium-tin-oxide thin films deposited on polyethylene terephtalate substrates by rf sputtering. J. Vac. Sci. Technol. A 16: 1636–1640

    Article  ADS  Google Scholar 

  • Larruquert JI, Keski-Kuha RAM (1999) Multilayer coatings with high reflectance in the extreme-ultraviolet spectral range of 50 to 121.6 nm. Appl. Opt. 38: 1231–1236

    Article  ADS  Google Scholar 

  • Larruquert JI, Keski-Kuha RAM (2000) Reflectance measurements and optical constants in the extreme ultraviolet for thin films of ion-beam-deposited SiC, Mo, Mg2Si, and InSb and of evaporated Cr. Appl. Opt. 39: 2772–2781

    Article  ADS  Google Scholar 

  • Lee CC, Chen SH, Jaing CC (1996) Optical monitoring of silver-based transparent heat mirrors. Appl. Opt. 35: 5698–5703

    Article  ADS  Google Scholar 

  • Lee CC, Chen HL, Hsu JC, Tien CL (1999) Interference coatings based on synthesized silicon nitride. Appl. Opt. 38: 2078–2082

    Article  ADS  Google Scholar 

  • Lehan JP (1996) Determination of grain size in indium tin oxide films from transmission measurements. Appl. Opt. 35: 5048–5051

    Article  ADS  Google Scholar 

  • Lingg LJ, Targove JD, Lehan JP, Macleod HA (1987) Ion-assisted deposition of lanthanide trifluorides for VUV applications. SPIE 818:86–92

    ADS  Google Scholar 

  • Lorenz H, Eisele I, Ramm J, Edlinger J, Biihler M (1991) Characterization of low temperature Si02 and Si3N4 films deposited by plasma enhanced evaporation. J. Vac. Sci. Technol. B 9: 208–214

    Article  Google Scholar 

  • Luff BJ, Wilkinson JS, Perrone G (1997) Indium tin oxide overlayered waveguides for sensor applications. Appl. Opt. 36: 7066–7072

    Article  ADS  Google Scholar 

  • Macleod HA (1986) Thin-film optical filters. Second edn. Adam Hilger LTD, Bristol, pp 398, 504–511

    Book  Google Scholar 

  • Martin PJ, Bendavid A, Takikawa H (1999) Ionized plasma vapor deposition and filtered arc deposition; processes, properties and applications. J. Vac. Sci. Technol., A 17: 2351–2359

    Article  ADS  Google Scholar 

  • Martin PM, Stewart DC, Bennett WD, Affinito JD, Gross ME (1997) Multifunctional multilayer optical coatings. J. Vac. Sci. Technol. A 15: 1098–1102

    Article  ADS  Google Scholar 

  • Marx D, Murphy R (1990) Sputtering targets: Challenges for the 1990s. Solid State Technology, March: 11–14

    Google Scholar 

  • Matsushita Electric Ind Co Ltd. (1994) Manufacture of optical parts. JP 05188204

    Google Scholar 

  • Matthews A, Bachmann PK (eds) (1991) Diamond and diamond-like carbon coatings 1990. Elsevier Sequoia S.A., Lausanne

    Google Scholar 

  • Mendez JA, Larruquert JI, Aznarez JA (2000) Preservation of far UV aluminum reflectance by means of overcoating with C60 films. Appl. Opt. 39: 149–156

    Article  ADS  Google Scholar 

  • Merck KGaA (1993) Process for producing evaporation material for preparation of medium refractive index optical films. EP 0 574 785

    Google Scholar 

  • Merck KGaA (1993) Material for vapour deposition for the production of high refractive optical layers. EP 0 561 289

    Google Scholar 

  • Newns GR, Pantelis P, Wilson JL, Uffen RWJ, Worthington R (1973) Absorption losses in glasses and glass fibre waveguides. Opto-electronics 5: 289–296

    Article  Google Scholar 

  • Niederwald H, Laux S, Kennedy M, Schallenberg U, Duparre A, Mertin M, Kaiser N, Ris-tau D (1999) Ion-assisted deposition of oxide materials at room temperature by use of different ion sources. Appl. Opt. 38: 3610–3613

    Article  ADS  Google Scholar 

  • Phillips RW, Bleikolm AF (1996) Optical coatings for document security. Appl. Optics 35: 5529–5534

    Article  ADS  Google Scholar 

  • Phillips RW, Nofi M (1999) Colors by chemistry or by physics. Proceedings SVC: 494–499

    Google Scholar 

  • Pinard L, Mackowski JM (1997) Synthesis and physicochemical characterization of silicon oxynitride thin films prepared by rf magnetron sputtering. Appl. Opt. 36: 5451–5459

    Article  ADS  Google Scholar 

  • Pulker HK (1979) Characterization of optical thin films. Appl. Opt. 18: 1969–1977

    Article  ADS  Google Scholar 

  • Pulker HK (1999) Coatings on Glass. Second, revised edn. Elsevier, Amsterdam, pp 219–223, 394–428

    Google Scholar 

  • Rafla-Yuan H, Rancourt JD, Cumbo MJ (1997) Ellipsometric study of thermally evaporated germanium thin film. Appl. Opt. 36: 6360–6363

    Article  ADS  Google Scholar 

  • Rahe M, Oertel E, Reinhardt L, Ristau D, Welling H (1990) Absorption calorimetry and laser induced damage threshold measurements of AR-coated ZnSe and metal mirrors at 10.6 urn. SPIE 1441:113–126

    Article  Google Scholar 

  • Reicher D, Black P, Jungling K (2000) Defect formation in hafnium dioxide thin films. Appl. Opt. 39: 1589–1599

    Article  ADS  Google Scholar 

  • Ristau D, Gunster S, Bosch S, Duparre A, Masetti E, Ferre-Borrull J, Kiriakidis G, Peiro F, Quesnel E, Tikhonravov A, (2001) UV-optical and microstructural properties of MgF2-and LaF3-coatings deposited by IBS and PVD processes. Optical Interference Coatings Banff, OSA Technical Digest: ThA5-l–ThA5–3

    Google Scholar 

  • Ritter E, Hoffmann R (1969) Influence of substrate temperature on the condensation of vacuum evaporated films of MgF2 and ZnS. J. Vac. Sci. Technol. 6: 733–736

    Article  ADS  Google Scholar 

  • Ritter E (1971) Die Eigenschaften verschiedener Siliciumoxid-Phasen in dunnen Schichten. Vakuum-Technik 21: 42–48

    Google Scholar 

  • Ritter E (1975) Dielectric film materials for optical applications. In: Hass G, Francombe MH, Hoffman RW (eds) Physics of thin films, vol 8. Academic Press, New York, pp 1–49

    Google Scholar 

  • Rudisill, JE, Braunstein, M, Braunstein AI (1974) Optical coatings for high energy ZnSe laser windows. Appl. Optics 13: 2075–2080

    Article  ADS  Google Scholar 

  • Scherer K, Nouvelot L, Lacan P, Bosmans R (1996) Optical and mechanical characterization of evaporated Si02 layers. Long term evolution. Appl. Opt. 35: 5067–5072

    Article  ADS  Google Scholar 

  • Schnellbuegel A, Hagedorn H, Anton R (1994) Ion assisted deposition of non-toxic coatings for high power CO2 laser optics. Proc. SPIE 2253: 839–848

    Article  ADS  Google Scholar 

  • Schrenk WJ, Wheatley JA, Lewis RA, Arends CB (1991) Nanolayer polymeric optical films. Tappi 1991 Polymers, laminations and coatings conference

    Google Scholar 

  • Schultz PC (1974) Optical absorption of the transition elements in vitreous silica. J.Am.Ceram.Soc. 75:309–313

    Article  Google Scholar 

  • Seeley JS, Hunneman R, Whatley A (1979) Infrared multilayer interference filter manufacture: supposed longwave limit. Appl. Optics 18: 3368–3370

    Article  ADS  Google Scholar 

  • Seeley JS, Hunneman R, Whatley A (1980) Far infrared filters for the Galileo-Jupiter and other missions. Appl. Optics 20: 31–39

    Article  ADS  Google Scholar 

  • Selhofer H, Muller R (1999) Comparison of pure and mixed coating materials for AR coatings for use by reactive evaporation on glass and plastic lenses. Thin Solid Films 351: 180–183

    Article  ADS  Google Scholar 

  • Selhofer H, Ritter E, Linsbod R (2002) Properties of titanium dioxide films prepared by reactive electron beam evaporation from various starting materials. Appl. Opt. 41: 756–762

    Article  ADS  Google Scholar 

  • Shaw DG, Cline DS, Dawson EP, Langlois M (1995) Multicolor interference coating. US-Patent 5877895

    Google Scholar 

  • Stamm U, Patzel R, Bragin I, Kleinschmidt J, Vofi F, Basting D (1997) Recent developments in industrial excimer laser technology. SPIE 3092:485–492

    Article  ADS  Google Scholar 

  • Sullivan BT, Clarke GA, Akiyama T, Osborne N, Ranger M, Dobrowolski JA, Howe L, Matsumoto A, Song Y, Kikuchi K (2000) High-rate automated deposition system for the manufacture of complex multilayer coatings. Appl. Opt. 39: 157–167

    Article  ADS  Google Scholar 

  • Tabata A, Matsuno N, Suzuoki Y, Mizutani T (1996) Optical properties and structure of Si02 films prepared by ion-beam sputtering. Thin Solid Films 289: 84–89

    Article  ADS  Google Scholar 

  • Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl. Phys. Lett. 51:913–915

    Article  ADS  Google Scholar 

  • Venzago C, Weigert M. (1994) Application of the glow discharge mass spectrometry (GDMS) for the multi-element trace and ultratrace analysis of sputtering targets. Fre-senius J Anal Chem 350: 303–309

    Article  Google Scholar 

  • Wang X, Masumoto H, Someno Y, Hirai T (1999) Design and experimental approach of optical reflection filters with graded refractive index profiles. J. Vac. Sci. Technol. A 17:206–211

    Article  ADS  Google Scholar 

  • Weber MF, Stover CA, Gilbert LR, Nevitt TJ, Ouderkirk AJ (2000) Giant birefringent optics in multilayer polymer mirrors. Science 287:2451–2456

    Article  ADS  Google Scholar 

  • Weigert M (2001) New developments in materials for sputtering on glass. International Glass Review Issue 3: 72–76

    Google Scholar 

  • Wilhartitz P, Ortner HM, Krismer R, Krabichler H (1990) Classical analysis including trace-matrix separation versus solid state mass spectrometry: A comparative study for the analysis of high purity Mo, W and Cr. Microchim. Acta (Wien) II: 259–271

    Article  Google Scholar 

  • Wille B (1974) Refracting light permeable oxide layer and method for its manufacture. U. S. Patent 3 783 010

    Google Scholar 

  • Yamada Y, Uyama H, Watanabe S, Nozoye H (1999) Deposition at low substrate temperatures of high quality Ti02 films by radical beam-assisted evaporation. Appl.Opt. 38: 6638–6641

    Article  ADS  Google Scholar 

  • Zhang, S et al (1998) The effects of processing conditions on PbGeTe film performances. Proc SPIE 3175: 429–432

    Article  ADS  Google Scholar 

  • Zöller A, Götzelmann R, Matl K, Cushing D (1996) Temperature-stable bandpass filters deposited with plasma ion-assisted deposition. Appl. Opt. 35: 5609–5619

    Article  ADS  Google Scholar 

  • Zukic M, Torr DG, Spann JF, Torr MR (1990) Vacuum ultraviolet thin films. 1: Optical constants of BaF2, CaF2, LaF3, MgF2, A12O3, HfO2, SiO2 thin films. Appl. Opt. 29:4284–1292

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Friz, M., Waibel, F. (2003). Coating Materials. In: Kaiser, N., Pulker, H.K. (eds) Optical Interference Coatings. Springer Series in Optical Sciences, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36386-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36386-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05570-6

  • Online ISBN: 978-3-540-36386-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics