Skip to main content

Nanosuspensions: Emerging Novel Agrochemical Formulations

  • Chapter
Insecticides Design Using Advanced Technologies

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandridis P, Hatton TA (1995) Poly (ethylene oxide)-Poly (propylene oxide)-Poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamic, structure, dynamics and modeling. Colloids Surf A: Pysicochem Eng Aspects 96:1–46

    Article  CAS  Google Scholar 

  • Aulenta A, Hayes W, Rannard S (2003) Dendrimers: a new class of nanoscopic containers and delivery devices. Eur Polym J 39:1741–1771

    Article  CAS  Google Scholar 

  • Bagchi P, Scaringe RP, Bosch HW (1997) Co-microprecipitation of nanoparticulate pharmaceutical agents with crystal growth modifiers. US Patent 5,665,331

    Google Scholar 

  • Behrens SH, Christl DI, Emmerzael R, Schurtenberger P, Borkovec M (2000) Charging and aggregation properties of carboxyl latex particles: experiments versus DLVO theory. Langmuir 16:2566–2575

    Article  CAS  Google Scholar 

  • Bialti U, Allemann E, Doelker E (2005) Development of nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci 24:67–75

    Article  CAS  Google Scholar 

  • Bilgili E, Hamey R, Scarlett B (2005) Nano-milling of pigment agglomerates using a wet stirred media mill: elucidation of the kinetics and breakage mechanism. Chem Eng Sci 61:149–157

    Google Scholar 

  • Bishop JF, Czekai DA (1997) Ink jet inks containing nanoparticles of organic pigments. US Patent 5,679,138

    Google Scholar 

  • Bohem AL, Martinon I, Zerrouk, Rump E, Fessi H (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J Microencapsul 20:433–441

    Article  CAS  Google Scholar 

  • Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliver Rev 56:1649–1659

    Article  CAS  Google Scholar 

  • Brick MC, Palmer HJ, Whitesides TH (2003) Formation of colloidal dispersions of organic materials in aqueous media by solvent shifting. Langmuir 19:6367–6380

    Article  CAS  Google Scholar 

  • Brock CP, Schweizer WB, Dunitz JD (1991) On the validity of the Wallach's rule: on the density and stability of racemic crystals compared with their chiral counterparts. J Am Chem Soc 113:9811–9820

    Article  CAS  Google Scholar 

  • Bruce WF, Edwards CD, Apat JK (1956) Therapeutic composition comprising tabular N, N′-dibenzylethylenediamine di-penicillin and process for making same. US Patent 2,745,785

    Google Scholar 

  • Bruno JA, Doty BD, Gustow E, Illig KJ, Rajagopalan N, Sarpotdar P (1996) Method of grinding pharmaceutical substances. US Patent 5,518,187

    Google Scholar 

  • Brynjelsen S, Doty M, Kipp JE, Jayswal N, Narayanan K (2004) Preparation of submicron-sized nanoparticles via dispersion lyophilization. US Patent 6,835,396

    Google Scholar 

  • Byrne DN, Bellows TS, Parrella MP (1990) Whiteflies in agricultural systems. In: Gerling D (ed) Whiteflies: their bionomics, pest status and management. Intercept, Andover, Hants, UK, pp 227–261

    Google Scholar 

  • Cabrera AR, Cloyd RA, Zaborski ER (2005) Lethal and sub-lethal effects of novaluron (Pedestral R) on the soil-dwelling predatory mite, Stratiolaelaps scimitus (Womersley) (Acari: Mesostigmata: Laelapidae), under laboratory conditions. J Entomol Sci 40:47–53

    CAS  Google Scholar 

  • Ceve G (2004) Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliver Rev 56:675–711

    Article  CAS  Google Scholar 

  • Chang YI, Chang PK (2002) The role of hydration force on the stability of the suspension of Saccharomyces cerevisiae: application of the extended DLVO theory. Coll Surf A: Physicochem Eng Aspects 211:67–77

    Article  CAS  Google Scholar 

  • Charcosset C, Fessi H (2005) Preparation of nanoparticles with a membrane contactor. J Membrane Sci 266:115–120

    Article  CAS  Google Scholar 

  • Chari K, Antalek B, Kowalczyk J, Eachus S, Chen T (1999) Polymer-surfactant interaction and stability of amorphous colloidal particles. J Phys Chem B 103:9867–9872

    Article  CAS  Google Scholar 

  • Chattopadhyay P, Gupta RB (2000) Production of antibiotic nanoparticles by supercritical CO2 as antisolvent with enhanced mass transfer. Ind Eng Chem Res 40:3530–3539

    Article  CAS  Google Scholar 

  • Chattopadhyay P, Gupta RB (2001) Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer. Int J Pharm 228:19–31

    Article  PubMed  CAS  Google Scholar 

  • Chaubal M, Doty M, Gelman Y, Wisler M (2005) Process for the production of essentially solvent-free small particles. WO2005044225

    Google Scholar 

  • Chen X, Young TJ, Marazban S, Williams III RO, Johnston KP (2002) Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Int J Pharm 242:3–14

    Article  PubMed  CAS  Google Scholar 

  • Chen J-F, Zhou M-Y, Shao L, Wang Y-Y, Yun J, Chew NYK, Chan H-K (2004) Feasibility of preparing nanodrugs by high-gravity reactive precipitation. Int J Pharm 269:267–274

    Article  PubMed  CAS  Google Scholar 

  • Choi Y-J, Chung S-T, Oh M, Kim H-S (2005) Investigation of crystallization in a jet Y-mixer by a hybrid computational fluid dynamics and process simulation approach. Cryst Growth Des 5:959–968

    Article  CAS  Google Scholar 

  • Clark MM, Ahn W-Y, Li X, Sternisha N, Riley RL (2005) Formation of polysulfone colloids for adsorption of natural organic foulants. Langmuir 21:7207–7213

    Article  PubMed  CAS  Google Scholar 

  • Cloyd RA, Keith SR, Galle CL (2004) Effect of the insect growth regulator novaluron (Pedestral) on silverleaf whitefly reproduction. Horttechnology 14:551–554

    CAS  Google Scholar 

  • Coffee RA (2001) Dispersing device and method of forming material. US Patent 6,252,129

    Google Scholar 

  • Cooper ER, Ruddy SB (2005) Compositions having a combination of immediate release and controlled release characteristics. US Patent 6,908,626

    Google Scholar 

  • Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug Carr Sys 19:99–134

    Article  CAS  Google Scholar 

  • Crooks R, Joanicot M, Prud'Homme RK, Coret J (2003) Aqueous suspension of nanoparticles comprising agrochemical active ingredient. US Patent 6,638,994

    Google Scholar 

  • Czekai DA, Seaman LP (1996) Comminution with small-particle milling media. US Patent 5,500,331

    Google Scholar 

  • Czekai DA, Seaman LP (1998) Continuous method of grinding pharmaceutical substances. US Patent 5,718,388

    Google Scholar 

  • Czekai DA, Seaman LP (1999) Method of grinding pharmaceutical substances. US Patent 5,862,999

    Google Scholar 

  • Date AA, Patravale VB (2004) Current strategies in engineering drug nanoparticles. Curr Opin Coll Interf Sci 9:222–235

    Article  CAS  Google Scholar 

  • Dennis DN, Martin CR, Rogers RJ, Stewart JD (2004) Nanoparticle delivery system. WO2004037316

    Google Scholar 

  • Dvorsky JE, Graham B, Alavattam S (2005) Quick dissolving agrochemical products. WO2005044006

    Google Scholar 

  • Eerikainen H, Watanabe W, Kauppinen E, Ahonen P (2003) Aerosol flow reactor method for the synthesis of drug nanoparticles. Eur J Pharm Biopharm 55:357–360

    Article  PubMed  CAS  Google Scholar 

  • Fanton X, Cazabat M (1998) Spreading and instabilities induced by a solutal Marangoni effect. Langmuir 14:2554–2561

    Article  CAS  Google Scholar 

  • Fessi C, Devissaguet J-P, Puisieux F, Francis TC (1992) Process for the preparation of dispersible colloidal substance in the form of nanoparticles. US Patent 5,118,785

    Google Scholar 

  • Fessi C, Puisieux F, Devissaguet JP, Ammoury N, Benita S (1989) Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 55: R1–R4

    Article  CAS  Google Scholar 

  • Finsy R (2004) On the critical radius in Ostwald ripening. Langmuir 20:2975–2976

    Article  PubMed  CAS  Google Scholar 

  • Fowles AM, Dixon KR, Mulqueen PJ, Banks G (1999) Pesticidal adjuvants. WO9948359

    Google Scholar 

  • Frank S, Lofroth J-E, Bostanian L (1998) Small-particle formation. US Patent 5,780,062

    Google Scholar 

  • Fredric R, Matijevic E (2000) Preparation of micrometer-size budesonide particles by precipitation. J Colloid Interf Sci 229:207–211

    Article  CAS  Google Scholar 

  • Frederiksen HK, Kristensen HG, Pedersen M (2003) Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin-incompatibility of the lipid and the pyrethroid and biological properties of the formulations. J Control Release 86:243–252

    Article  PubMed  CAS  Google Scholar 

  • Gang H (2004) Removal of pesticides via photocatalytic titania nanoparticle suspension. CN1504555. Chem Abs 143:114541

    Google Scholar 

  • Garg A, Kokkoli E (2005) Charcterization particulate drug delivery carriers with atomic force microscopy. IEEE Eng Med Bio Mag 24:87–95

    Article  Google Scholar 

  • Gassman P, Sucker H (2002) Pharmaceutical compositions comprised of stabilized peptide particles. US Patent 6,447,806

    Google Scholar 

  • Gillies ER, Frechet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43

    Article  PubMed  CAS  Google Scholar 

  • Goss GR, Volgas GC, Salyani M (eds) (2005) Pesticide formulations and delivery systems. ASTM International West Conshohocken, PA, USA

    Google Scholar 

  • Gratz H (1997) Ostwald ripening: new relations between particle growth and particle size distribution. Scripta Materialia 37:9–16

    Article  CAS  Google Scholar 

  • Gratz H (1999) A time constant for Ostwald ripening of precipitates and normal grain growth. J Mater Sci Lett 18:1637–1639

    Article  CAS  Google Scholar 

  • Hassan EM (2003) Method of making nanoparticles of substantially water insoluble materials. US Patent 6,623,761

    Google Scholar 

  • Haynes DH (1992) Phospholipid coated microcrystals: injectible formulations of water insoluble drugs. US Patents 5,091,187; 5,091,188

    Google Scholar 

  • Hedberg PMC, Skantze TU, Von Corswant LC, Zackrisson AE, Lindfors L, Olsson U (2003) Aqueous dispersion comprising stable nanoparticles of a water-insoluble active and an excipient-like middle chain triglycerides (MCT). WO03013472

    Google Scholar 

  • Horn D (1989) Preparation and characterization of microdispersed bioavailable carotenoid hydrosols. Angew Makromol Chem 166:139–153

    Article  Google Scholar 

  • Horn D, Schmidt HW, Ditter W, Hartmann H, Lueddecke E, Schmieder K (1985) Preparation of finely divided pulverulent carotinoid and retinoid compositions. US Patent 4,522,743

    Google Scholar 

  • Horowitz AR, Ishaaya I (1994) Managing resistance to IGRs in the sweet potato whitefly (Homoptera: Aleyrodidae). J Econ Entomol 87: 866–871

    CAS  Google Scholar 

  • Horowitz AR, Forer G, Ishaaya I (1996) Insecticide resistance management as a part of an IPM strategy in Israeli cotton fields. In: Constable GA, Forrester WW (eds) Challenging Future. Proceedings of the World Cotton Research Conference. CSIRO, Australia, pp 537–544

    Google Scholar 

  • Huang L-F, Tong W-Q (2004) Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliver Rev 56:321–334

    Article  CAS  Google Scholar 

  • Ishaaya I, Horowitz AR (1998) Insecticides with novel modes of action. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action: mechanism and application. Springer, Berlin Heidelberg New York, pp 1–24

    Google Scholar 

  • Ishaaya I, Yablonski S, Horowitz AR (1995) Comparative toxicity of two ecdysteroid agonists, RH-2485 and RH-5992, on susceptible and pyrethroid-resistant strains of the Egyptian cotton leafworm, Spodoptera littoralis. Phytoparasitica 23:139–145

    Article  CAS  Google Scholar 

  • Ishaaya I, Yablonski S, Mendelson Z, Mansour Y, Horowitz AR (1996) Novaluron (MCW-275), a novel benzoylphenyl urea, suppressing developing stages of lepidopteran, whitefly and leafminer pests. Brighton Crop Prot Conf – Pests and Diseases, Nov 1996, pp 1013–1020

    Google Scholar 

  • Ishaaya I, Kontsedalov S, Mazirov D, Horowitz AR (2001) Biorational agents—mechanism and importance in IPM and IRM programs for controlling agricultural pests. Proc Int Symp Crop Protect Med Fac Landbouww, Univ Gent 66:363–374

    CAS  Google Scholar 

  • Ishaaya I, Horowitz AR, Tirry L, Barazani A (2002) Novaluron (Rimon), a novel IGR: mechanism, selectivity and importance in IPM programs. Proc Int Symp Crop Protect Med Fac Landbouww, Univ Gent 67:617–626

    CAS  Google Scholar 

  • Ishaaya I, Kontsedalov S, Horowitz AR (2003) Novaluron (Rimon) a novel IGR: potency and cross resistance. Arch Ins Biochem Phys 54:157–164

    Article  CAS  Google Scholar 

  • Ishaaya I, Kontsedalov S, Horowitz AR (2005) Biorational insecticides: mechanism and cross resistance. Arch Insect Biochem Physiol 58:192–199

    Article  PubMed  CAS  Google Scholar 

  • Jacob JS, Jong YS, Abramson DT, Mathiowitz E, Santos CA, Bassett MJ, Furtardo S (2005) Nanoparticulate therapeutic biologically active agents. US Application 20050181059

    Google Scholar 

  • Jain KK (2005) Nanotechnology-based drug delivery for cancer. Tech Cancer Res Treat 4:407–416

    CAS  Google Scholar 

  • Johnston KP, Williams RO, Young TJ, Chen X (2002) Preparation of drug particles using evaporation precipitation into aqueous solution. US20020081334

    Google Scholar 

  • Kaiser O, Lemke A, Hernandez-Trejo N (2006) The impact of nanobiotechnology on the development of new drug delivery systems. Curr Pharm Biotech (in press)

    Google Scholar 

  • Kaiser O, Olbrich C, Yardley V, Kiderlen AF, Croft SL (2003) Formulation of amphotericin B as nanosuspension for oral administration. Int J Pharm 254:73–75

    Article  CAS  Google Scholar 

  • Karim A, Brugger AM, Gao P, Hassan F, Forbes JC (2003) Use of celecoxib composition for fast pain relief. US Patent 6,579,895

    Google Scholar 

  • Kidane A, Bhatt PP (2005) Recent advances in small-molecule drug delivery. Curr Opin Chem Biol 9:347–351

    Article  PubMed  CAS  Google Scholar 

  • Kipp JE (2004) The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 284:109–122

    Article  PubMed  CAS  Google Scholar 

  • Kipp JE, Doty MJ, Rebbeck CL, Brynjelsen S, Teresa KJ (2003) Composition of and method for preparing stable particles in frozen aqueous matrix. US Application 20030077329

    Google Scholar 

  • Kipp JE, Wong JCT, Doty MJ, Rebbeck CL, Brynjelsen S, Werling J, Sriram R (2002) Method for preparing submicron particle suspensions. WO02055059

    Google Scholar 

  • Kipp JE, Wong JCT, Doty MJ, Werling J, Rebbeck CL, Brynjelsen S (2004) Method for preparing small particles. WO2004082659

    Google Scholar 

  • Kipp JE, Wong JCT, Doty MJ, Rebbeck CL, Brynjelsen S (2005) Microprecipitation method for preparing submicron suspension. US Patent 6,951,656

    Google Scholar 

  • Kopf H, Joshi RK, Soliva M, Speiser P (1976) Pharmazeutische Industrie 38:281

    Google Scholar 

  • Krause K, Müller RH (2001) Production and characterization of highly concentrated nanosuspensions by high-pressure homogenization. Int J Pharm 214:21–24

    Article  PubMed  CAS  Google Scholar 

  • Kreitz MR, Jong YS, Mathiowitz E, Enscore DJ, Bassett MJ (2004) Nanoparticulate bioactive agents. US Application 2004220081

    Google Scholar 

  • Kropf C, Foerester T, Fabry B, Hollenbrock M (2001) Use of nanoscale sterols and sterol esters. US Patent 6,316,030

    Google Scholar 

  • Lee J, Lee S-J, Choi J-Y, Yoo J-Y Ahn C-H (2005) Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur J Pharm Sci 24:441–449

    Article  PubMed  CAS  Google Scholar 

  • LeMer VK, Dinegar RH (1950) Theory, production and theory of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854

    Article  Google Scholar 

  • Levy-Ruso G, Toledano O (2005) A process for the preparation of nanoparticulate pesticidal formulations and compositions obtained therefrom. WO 2005087002

    Google Scholar 

  • Lindfors L (2004a) Aqueous dispersion comprising stable nanoparticles of a water-insoluble pyrrole carboxamide and excipient-like middle-chain triglycerides. WO2004069227

    Google Scholar 

  • Lindfors L (2004b) Stable dispersions of solid particles comprising a water-insoluble pyrazine compound. WO2004069277

    Google Scholar 

  • Lipinski CA (2002) Poor aqueous solubility—an industry wide problem in drug discovery. Am Pharm Rev 5:82–85

    Google Scholar 

  • Liu Y, Yan I, Heiden P, Laks P (2001) Use of nanoparticles for controlled release of biocides in solid wood. J Appl Polym Sci 79:458–465

    Article  CAS  Google Scholar 

  • Liversidge GG, Cundy KC (1995) Particle size reduction for improvement of oral bioavailability of hydrophobic drugs. Int J Pharm 125:91–97

    Article  CAS  Google Scholar 

  • Liversidge GG, Cundy KC, Bishop JF, Czekal DA (1992) Surface-modified drug nanoparticles. US Patent 5,145,684

    Google Scholar 

  • Liversidge E, Gottardy GA, Wei L (2001) Methods for preventing crystal growth and particle aggregation in nanoparticulate compositions. US Patent 6,267,989

    Google Scholar 

  • Liversidge GG, Eickhoff WM, Illig KJ, Sarpotdar P, Ruddy SB (2002) Methods for targeting drug delivery to the upper and/or lower gastrointestinal tract. US Patent 6,432,381

    Google Scholar 

  • Lopez-Quintela MA (2003) Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control. Curr Opin Colloid Interf Sci 8:137–144

    Article  CAS  Google Scholar 

  • Madras G, McCoy BJ (2002) Ostwald ripening with size-dependant rates: similarity and power-law solutions. J Chem Phys 117:8042–8048

    Article  CAS  Google Scholar 

  • Majahan AJ, Kirwan DJ (1993) Rapid precipitation of biochemicals. J Phys D: Appl Phys 26:B176–B180

    Article  Google Scholar 

  • Majahan AJ, Kirwan DJ (1994) Nucleation and growth kinetics of biochemicals measured at high supersaturations. J Crys Growth 144:281–290

    Article  Google Scholar 

  • Mao Z-S, Chen J (2004) Numerical simulation of the Marangoni effect on mass transfer to single slowly moving drops in the liquid-liquid system. Chem Eng Sci 59:1815–1828

    Article  CAS  Google Scholar 

  • Martin CR, Kohli P (2004) The emerging field of nanotubes biotechnology. Nat Rev Drug Dis 2:29–37

    Article  CAS  Google Scholar 

  • Mathiowitz E, Christopher T, Zhi L (2003) Methods for micronization of hydrophobic drugs. WO03013683

    Google Scholar 

  • Merisko-Liversidge E (2002) Nanocrystals: resolving pharmaceutical formulation issues associated with poorly water soluble compounds. Abstracts “Particles 2002” April 20–23, Orlando, Florida, Abstract no. 45, p. 49

    Google Scholar 

  • Merisko-Liversidge E, Sarpotdar P, Bruno J, Hajj S, Wei L, Peltier N, Rake J, Shaw JM, Pugh S, Polin L, Jones J, Corbett T, Cooper E, Liversidge GG (1996) Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm Res 13:272–278

    Article  PubMed  CAS  Google Scholar 

  • Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly water-soluble compounds. Eur J Pharm Sci 18:113–120

    Article  PubMed  CAS  Google Scholar 

  • Mulla MS, Thavara U, Tawatsin A, Chompoosri J, Zaim M, Su T (2003) Laboratory and field evaluation of novaluron, a new acylurea insect growth regulator, against Aedes aegypti (Diptera: Culicidae). J Vector Ecol 28:241–254

    PubMed  Google Scholar 

  • Müller BW, Müller RH (1984) Particle size analysis of latex suspensions and microemulsions by photon correlation spectroscopy. J Pharm Sci 73:915–918

    Article  PubMed  Google Scholar 

  • Müüller F, Peukert W, Polke R, Stenger F (2004) Dispersing nanoparticles in liquids. Int J Miner Process 74S:S31–S41

    Article  CAS  Google Scholar 

  • Müller RH (2002) Nanopure technology for the production of drug nanocrystals and polymeric particles. Proceedings of the 4th World Meeting on Pharmaceutics, Biopharmaceutics & Pharmaceutical Technology. Florence, 8–11 April

    Google Scholar 

  • Müller RH, Jacobs C (2002) Buparvaquone mucoadhesive nanosuspension: preparation, optimization and long-range stability. Int J Pharm 237:151–161

    Article  PubMed  Google Scholar 

  • Müller RH, Keck CM (2004) Challenges and solution for the delivery of biotech drugs—a review of drug nanocrystal technology and lipid nanoparticle. J Biotech 113:151–170

    Article  CAS  Google Scholar 

  • Müller RH, Peters K (1998) Nanosuspensions for the formulation of poorly soluble drugs I. Preparation by size reduction technique. Int J Pharm 160:229–237

    Article  Google Scholar 

  • Müller RH, Becker R, Kruss B, Peters K (1998) Pharmaceutical nanosuspensions for medicament administration as system of increased saturation solubility and rate of solution. US Patent 5,858,410

    Google Scholar 

  • Müller RH, Mader M, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of state of the art. Eur J Pharm Biopharm 50:161–177

    Article  PubMed  Google Scholar 

  • Müller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulation in therapy. Rationale for development and what we can expect for the future. Adv Drug Deliver Rev 47:3–19

    Article  Google Scholar 

  • Müller RH, Schmidt S, Buttle I, Akkar A, Schmitt J, Bomer S (2004) SolEmul®—novel technology for formulation of IV emulsions with poorly soluble drugs. Int J Pharm 269:293–302

    Article  PubMed  CAS  Google Scholar 

  • Mulqueen M (2003) recent advances in agrochemical formulations. Adv Colloid Interf Sci 106:83–107

    Article  CAS  Google Scholar 

  • Na GC, Rajagopalan N (1994) Use of ionic cloud point modifiers to prevent particle aggregation during sterilization. US Patent 5,298,262

    Google Scholar 

  • Oppenheim RC (1980) In: Juliano RL (ed) Nanoparticles in drug delivery systems. Oxford University Press, New York, pp 177–188

    Google Scholar 

  • Parikh I, Selvaraj U (1999) Composition and method of preparing microparticles of water insoluble substances. US Patent 5,922,355

    Google Scholar 

  • Patravale VB, Date AA, Kulkarni RM (2004) Nanosuspension: a promising drug delivery strategy. J Pharm Pharmacol 56:827–840

    Article  PubMed  CAS  Google Scholar 

  • Peukert W, Schwarzer H-C, Stenger F (2005) Control of aggregation in production and handling of nanoparticles. Chem Eng Proc 44:245–252

    Article  CAS  Google Scholar 

  • Pons M, Estelrich J (1996) Liposomes as an agrochemical tool: optimization of their production. Ind Crops Prod 5:203–208

    Article  CAS  Google Scholar 

  • Price R, Kaerger JS (2004) Process for the production of particles. WO2004073827

    Google Scholar 

  • Rabinow BE (2004) Nanosuspensions in drug delivery. Nature Rev Drug Dis 3:785–796

    Article  CAS  Google Scholar 

  • Rasenack N, Müller BW (2002) Dissolution rate enhancement by in-situ micronization of poorly water soluble drugs. Pharm Res 19:1894–1900

    Article  PubMed  CAS  Google Scholar 

  • Reverchon E (1999) Supercritical antisolvent precipitation of micro- and nanoparticles. J Supercrit Fluid 15:1–21

    Article  CAS  Google Scholar 

  • Rieger J, Horn D (2001) Organic nanoparticles in aqueous phase. Angew Chem Int Ed 40:4330–4361

    Article  Google Scholar 

  • Rios M (2004) Strategies for micro- and nanoparticle development. Pharm Technol 28:40–53

    CAS  Google Scholar 

  • Roco MC (2001) From vision to implementation of the US national nanotechnology initiative. J Nanoparticle Res 3:5–11

    Article  CAS  Google Scholar 

  • Rodham DK (2000) Colloid and interface science in formulation research for crop protection products. Curr Opin Colloid Interf Sci 5:280–287

    Article  CAS  Google Scholar 

  • Rogers TL, Gillespie IB, Hitt JE, Fransen KL, Crowl CA, Tucker CJ, Kupperblatt GB, Becker JN, Wilson DL, Todd C, Broomall CF, Evans JC, Elder EJ (2004) Development and characterization of a scalable controlled precipitation process to enhance the dissolution of poorly water soluble drugs. Pharm Res 21:2048–2057

    Article  PubMed  CAS  Google Scholar 

  • Romano CE, Bugner DE, VanHanehem RC, Bennet JR, Smith DE, Guistina RA (2001) Process for preparing an ink-jet ink. US Patent 6,210,474

    Google Scholar 

  • Rosen H, Abribat T (2005) The rise and rise of drug delivery. Nature Rev Drug Dis 4:381–385

    Article  CAS  Google Scholar 

  • Ruch F, Matijevic E (2000) Preparation of micrometer size budesonide particles by precipitation. J Colloid Interf Sci 229:207–211

    Article  CAS  Google Scholar 

  • Ryde NP, Ruddy SB (2002) Solid-dose nanoparticulate compositions comprising synergistic combination of a polymeric surface stabilizer and dioctyl sodium sulfosuccinate. US Patent 6,375,986

    Google Scholar 

  • Ryde NP, Ruddy SB (2003) Nanoparticulate dispersions comprising a synergic combination of a polymeric surface stabilizer and dioctyl sodium sulfosuccinate. US Patent 6,592,903

    Google Scholar 

  • Schwarzer H-C, Peukert W (2005) Prediction of aggregation kinetics based on surface properties of nanoparticles. Chem Eng Sci 60:11–25

    Article  CAS  Google Scholar 

  • Sham JO-H, Zhang Y, Finlay WH, Roa WH, Lobenberg R (2004) Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int J Pharm 269:457–467

    Article  PubMed  CAS  Google Scholar 

  • Shang Q, Zheng H, Qi T (2004) Ivermectin water suspension nano capsule preparation and its preparing method. CN1491551 Chem Abs 2005 143:73278

    Google Scholar 

  • Sharp JM, Dickinson RB (2005) Direct evaluation of DLVO theory for predicting long-range forces between a yeast cell and a surface. Langmuir 21:8198–8203

    Article  PubMed  CAS  Google Scholar 

  • Shefter E (1981) Solubilization by solid state manipulation. In: Yalkowsky SH (ed) Techniques of solubilization of drugs. Marcel Dekker, New York, pp 159–182

    Google Scholar 

  • Shi HG, Farber L, Michaels JN, Dickey A, Thompson KC, Shelukar SD, Hurter PN, Rynolds SD, Kaufman MJ (2003) Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharm Res 20:479–484

    Article  PubMed  CAS  Google Scholar 

  • Short PL (2005) Growing Agchem R&D: Agrochemical researchers are maintaining their crop protection arsenals by using tools developed by the pharmaceutical industry. Chem Eng News Sept 19:19–22

    Google Scholar 

  • Sommer M, Stenger F, Peukert W, Wagner NJ (2005) Agglomeration and breakage of nanoparticles in stirred media mills—a comparison of different methods and models. Chem Eng Sci 61:135–148

    Google Scholar 

  • Spenleuhauer G, Bazile D, Veillard M, Prud'Homme C, Michalon J-P (1997) Nanoparticles based on a polyoxyethylene and polylactic acid block copolymer. US Patent 5,683,723

    Google Scholar 

  • Spenleuhauer G, Bazile D, Veillard M, Prud'Homme C, Michalon J-P (1998) Process for preparing nanoparticles. US Patent 5,766,635

    Google Scholar 

  • Storm RM, Price DC, Lubetkin SD (2000) Aqueous dispersion of agricultural chemicals. WO0060940

    Google Scholar 

  • Storm RM, Price DC, Lubetkin SD (2001) Aqueous dispersion of agricultural chemicals. US Patent 20010051175

    Google Scholar 

  • Su T, Mulla MS, Zaim M (2003) Laboratory and field evaluation of novaluron, a new insect growth regulator (IGR), against Culex mosquitoes. J Am Mosq Control Assoc 19: 408–418

    PubMed  CAS  Google Scholar 

  • Tang K, Sun W, Sun X, You X (2003) Nanosized pesticides and its production process. CN1389109. Chem Abs 2003 140:298919

    Google Scholar 

  • Tang R, Nancollas GH (2002) New mechanism for the dissolution of sparingly soluble minerals. Pure Appl Chem 74:1851–1857

    Article  CAS  Google Scholar 

  • Texter J (2001) Precipitation and condensation of organic particles. J Disp Sci Tech 22:499–527

    Article  CAS  Google Scholar 

  • Trotta M, Gallarate M, Pattarino F, Morel S (2001) Emulsions containing partially water soluble solvents for the preparation of drug nanosuspension. J Control Release 76:119–128

    Article  PubMed  CAS  Google Scholar 

  • Trotta M, Gallarate M, Carlotti ME, Morel S (2003) Preparation of griseofulvin nanoparticles from water-dilutable microemulsion. Int J Pharm 254:235–242

    Article  PubMed  CAS  Google Scholar 

  • Van Der Gun AM, Meewise JW, Infante Ferreira CA (2001) Ice production in a fluidized bed crystallizer. Proceedings of the 4th Workshop on Ice Slurries. November 12–13, Osaka, Japan, pp 175–184, see: http://www.projects.ex.ac.uk/ice/workshops.htm#fourth%20workshop

  • Van Keuren ER (2004) Polymer nanoparticles synthesized with solvent shifting. J Disp Sci Tech 25:547–553

    Article  CAS  Google Scholar 

  • Verhoff F, Pace GW, Snow RA, Millar F (2003) Milled particles. US Patent 6,634,576

    Google Scholar 

  • Violanto MR, Fischer HW (1989) Method for making uniformly sized particles from water insoluble organic compounds. US Patent 4,826,689

    Google Scholar 

  • Violanto MR, Steigbigel RT (1988) Particulate composition and use thereof as antimicrobial agent. US Patent 4,783,484

    Google Scholar 

  • Wang X, Wang Y, Xiong X, Li T, Liang J, Chen J (2004) Aqueous nano insecticide suspension and its preparation process. CN1486606, Chem Abs 2004 142:213751

    Google Scholar 

  • Werling J, Kipp JE, Sriram R, Doty MJ (2003) Preparation of submicron sized particles with polymorph control. US Application 2030096013

    Google Scholar 

  • Williams, RO III, Johnston KP, Young TJ, Rogers TL, Barron MK, Yu Z, Hu J (2003) Process for production of nanoparticles and microparticles by spray freezing into liquid. US Application 20030041602

    Google Scholar 

  • Wu W, Nancollas GH (1998) A new understanding of the relationship between solubility and particle size. J Solution Chem 27:521–531

    Article  CAS  Google Scholar 

  • Young T, Mawson S, Johnston KP, Henriksen IB, Pace GW, Mishra AK (2000) Rapid expansion from supercritical to aqueous solution to produce submicron suspension of water insoluble suspensions of water insoluble drugs. Biotechnol Prog. 16: 402–407

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Shang Q (2004) Water suspension acetamiprid nano capsule preparation and its preparing method. CN1491558. Chem. Abs. 2005 143: 73729

    Google Scholar 

  • Zhong J, Shen Z, Yang Y, Chen J (2005) Preparation and characterization of uniform nanosized cephadrine by combination of reactive precipitation and liquid anti solvent precipitation under high gravity environment. Int. J. Pharm. 301: 286–293

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sasson, Y., Levy-Ruso, G., Toledano, O., Ishaaya, I. (2007). Nanosuspensions: Emerging Novel Agrochemical Formulations. In: Ishaaya, I., Horowitz, A.R., Nauen, R. (eds) Insecticides Design Using Advanced Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46907-0_1

Download citation

Publish with us

Policies and ethics