Skip to main content

A Multivariate Approach to Quantitative Structure-Activity and Structure-Property Relationships

  • Chapter
Chemometrics in Environmental Chemistry - Applications

Part of the book series: The Handbook of Environmental Chemistry ((HEC2,volume 2 / 2H))

Summary

A chemometric strategy for quantitative structure-activity and structure-property relationship (QSAR, QSPR) analysis in environmental chemistry is outlined. In essence, the strategy is based upon grouping chemicals into homogeneous classes, and identifying small numbers of training set and validation set compounds that adequately represent each class. Biological and environmental response data generated for such sets of representative compounds may then be sufficient for constructing statistically sound models relating the variation in responses to the differences in chemical properties. The use of such QSAR or QSPR models may also allow the prediction of missing response data for untested compounds in the relevant class, and thus enable priority setting for further biological or environmental testing in relation to the predicted severity of these responses. Four representative examples of how QSAR and QSPR can be formulated for environmentally relevant classes of compounds and meaningful responses are addressed. Two of the illustrated applications are also developed within the framework of the chemometric QSAR strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ANOVA:

analysis of variance

BCF:

bioconcentration factor

CFCs:

chlorinated fluorocarbons

CV:

crossvalidation

DV:

design variable

EC50 :

effect concentration (50% effect)

EROD:

ethoxyresorufin-O-deethylase

FD:

factorial design

FFD:

fractional factorial design

HPLC:

high performance liquid chromatography

IC50 :

inhibitory concentration (50% effect)

IR:

infrared spectroscopy

KNN:

K nearest neighbours

LC:

liquid chromatography

LDA:

linear discriminant analysis

LD50 :

lethal dose (50% effect)

LR:

linear regression

MLR:

multiple linear regression

NBP:

4-nitrobenzylpyridine

NMR:

nuclear magnetic resonance spectroscopy

NN:

neural networks

OCDF:

octachlorodibenzofuran

PCA:

principal component analysis

PCDFs:

polychlorinated dibenzofurans

PCR:

principal component regression

PCs:

principal components

PLS:

partial least squares

PLS-DA:

partial least squares discriminant analysis

PRESS:

prediction error sum of squares

RR:

ridge regression

QSAR:

quantitative structure-activity relationships

QSPR:

quantitative structure-property relationships

SS y :

sum of squares of responses (y)

TCDD:

2,3,7,8-tetrachlorodioxin

TEF:

toxic equivalency factor

UV:

ultraviolet spectroscopy

B PLS :

PLS pseudo-regression coefficients

C :

loading matrix of PLS

E :

residual matrix

F :

residual matrix

̄ :

variable average

s 2 :

variable variance

K :

number of descriptor variables

M :

number of response variables

N :

number of chemicals in the training set

P :

loading matrix of PCA or PLS

Q 2 :

predicted variance

R 2 :

explained variance

R 2 cv :

predicted variance

T :

score matrix of PCA or PLS

U :

score matrix of PLS

W :

weight matrix of PLS

X :

matrix of descriptor variables

Y :

matrix of response variables

β :

regression coefficients

bp:

boiling point

D E :

electrophilic delocalizability

D N :

nucleophilic delocalizability

E HOMO :

energy of highest occupied molecular orbital

E LUMO :

energy of lowest unoccupied molecular orbital

E s :

Taft substituent constant

k NPB :

chemical reactivity of epoxides

K ow :

partition coefficient of octanol/water

mp:

melting point

Mw :

molecular weight

n D :

refractive index

p :

bond order

pK a :

acid dissociation constant

q :

atomic charge

TSA:

total surface area

TMV:

total molar volume

V vdW :

van der Waals volume

p :

density

σ :

Hammett sigma constant

µ :

electronegativity

ŋ :

hardness

References

  1. Glasser AC (1984) Meth Find Exptl Clin Pharmacol 6: 563

    CAS  Google Scholar 

  2. Tompson CJS (1990) The lure and romance of alchemy - a history of the secret link between magic and science. Bell New York

    Google Scholar 

  3. Dearden JC (1985) Environ Health Persp 61: 203

    Article  CAS  Google Scholar 

  4. Meyer H (1899) Arch Exper Pathol Pharmacol 42: 109

    Article  Google Scholar 

  5. Overton E (1897) Z Physik Chem 22: 189

    CAS  Google Scholar 

  6. Hammett LP (1970) Physical organic chemistry, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  7. Taft RW (1956) in: Newman MS (ed) Steric effects in organic chemistry. Wiley, New York, p 556

    Google Scholar 

  8. Hansch C, Leo AJ (1970) Substituent constants for correlation analysis in chemistry and biology. Wiley, New York

    Google Scholar 

  9. Blum DJW, Speece RE (1990) Environ. Sci. Technol. 24: 284

    Google Scholar 

  10. Wahlström B (1988) in: The use of QSAR for chemicals screening - limitations and possibilities: proceedings of a symposium arranged by National Chemicals Inspectorate, March 10, 1988, Stockholm

    Google Scholar 

  11. Wold S, (1991) Quant Struct-Act Relat 10: 191

    Article  CAS  Google Scholar 

  12. Wold S, Dunn WJ (1983) J Chem In(’ Comp Sci 23: 6

    Article  CAS  Google Scholar 

  13. Hermens JLM (1989) in: Hutzinger O (ed) Handbook of environmental chemistry, vol 2E. Springer Verlag, Berlin, p I II

    Google Scholar 

  14. Topliss JG, Edwards RP (1979) J Med Chem 22: 1238

    Article  CAS  Google Scholar 

  15. Wold S, Dunn WJ, Hellberg S (1985) Environ Health Persp 61: 257

    Article  CAS  Google Scholar 

  16. Frank IE, Friedman JH (1993) Technometrics 35: 109

    Article  Google Scholar 

  17. Sjöström M, Eriksson L (1995) in: van de Waterbeemd (ed) Chemometric methods in molecular design, vol 2. Verlag Chemie, Weinheim. In press.

    Google Scholar 

  18. Stone M, Jonathan P (1994) J Chemom 8: 1

    Article  CAS  Google Scholar 

  19. Smits JRM, Meissen WJ, Buydens LMC, Kateman G (1994) Chemom Intell Lab Syst 22: 165

    Article  CAS  Google Scholar 

  20. Eriksson L, Jonsson J, Hellberg S, Lindgren F, Skagerberg B, Sjöström M, Wold S, Berglind R (1990) Environ Toxicol Chem 9: 1339

    Article  CAS  Google Scholar 

  21. Tosato ML, Vigano L. Skagerberg B, Clementi S (1991) Environ Sci Technol 25: 695

    Article  CAS  Google Scholar 

  22. Hellberg S (1986) A multivariate approach to QSAR. Thesis, Umeâ University, Umeâ

    Google Scholar 

  23. Nendza M, Hermens JLM (1994), in preparation

    Google Scholar 

  24. Dunn WJ (1989) Chemom Intel! Lab Syst 6: 181

    Article  CAS  Google Scholar 

  25. Simmons BP, Spear RC (1993) Environ Sci Technol 27: 2430

    Article  CAS  Google Scholar 

  26. Devillers J, Thioulouse J, Karcher W (1993) Ecotoxicol Environ Saf 26: 333

    Article  CAS  Google Scholar 

  27. Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters Wiley, New York

    Google Scholar 

  28. Nocerino JM (1995) This volume

    Google Scholar 

  29. Carlson R (1992) Design and optimization in organic synthesis. Elsevier, Amsterdam

    Google Scholar 

  30. Tosato ML, Marchini S, Passerini L, Pino A, Eriksson L, Lindgren F, Hellberg S, Johnsson J, Sjöström M, Skagerberg B, Wold S (1990) Environ Toxicol Chem 9: 265

    Article  CAS  Google Scholar 

  31. Baroni M, Clementi S, Cruciani G, Kettaneh-Wold N, Wold S (1993) Quant Struct -Act Relat 12: 225

    Article  CAS  Google Scholar 

  32. Eriksson L, Jonsson J, Berglind R (1993) Environ Toxicol Chem 12: 1185

    Article  CAS  Google Scholar 

  33. Wold S, Esbensen K, Geladi P (1987) Chemom Intell Lab Syst 2: 37

    Article  CAS  Google Scholar 

  34. Wold S, Albano C, Dunn WJ, Esbensen K, Hellberg S, Johansson E, Sjöström M (1983) in: Martens H, Russwurm, H (eds) Food research and data analysis. Applied Science Publishers, London, p. 147

    Google Scholar 

  35. Dunn WJ, Wold S, Edlund L. Hellberg S, Gasteiger J (1984) Quant Struct -Act Relat 3: 131

    Article  CAS  Google Scholar 

  36. Wold S (1978) Technometrics 20: 397

    Article  Google Scholar 

  37. Stone (1974) J Roy Stat Soc B36: 111

    Google Scholar 

  38. Wold S, Eriksson L (1995) in: van de Waterbeemd (ed) Chemometric methods in molecular design, vol 2. Verlag Chemie, Weinheim. In press

    Google Scholar 

  39. Schüümann G (1990) Environ Toxicol Chem 9: 417

    Article  Google Scholar 

  40. Pearson RG (1986) Proc Natl Acad Sci 83: 8440

    Article  CAS  Google Scholar 

  41. Eriksson L, Verhaar HJM, Hermens JLM (1994) Environ Toxicol Chem 13: 683

    Article  CAS  Google Scholar 

  42. De Bruijin J, Hermens JLM (1991) Environ Toxicol Chem 10: 791

    Google Scholar 

  43. De Bruijn J, Seinen W. Hermens JLM (1993) Environ Toxicol Chem 12: 1041

    Article  Google Scholar 

  44. De Bruijn J, Hermens JLM (1993) Aquat Toxicol 24: 257

    Article  Google Scholar 

  45. Verhaar HJM, Eriksson L, Sjöström M, Schüürmann G, Seinen W, Hermens JLM (1994) Quant. Struct -Act Relat 13: 133

    CAS  Google Scholar 

  46. Eriksson L, Berglind R, Larsson R, Sjöström M, J Environ Sci Health A28: 1123

    Google Scholar 

  47. Eriksson L, Sandström BE, Sjöström M, Tysklind M, Wold S (1993) Quant Struct -Act Relat 12: 124

    Article  CAS  Google Scholar 

  48. Tysklind M (1993) Multivariate chemical characterization and modelling of polychlorinated dioxins and dibenzofurans. Thesis, Umeâ University, Umeâ

    Google Scholar 

  49. Tysklind M, Lundgren K, Eriksson L, Sjöström M, Rappe C (1993) Chemosphere 27: 47

    Article  CAS  Google Scholar 

  50. Tysklind M, Tillitt D, Eriksson L, Lundgren K, Rappe C (1994) Fundam Appl Toxicol 22: 277

    Article  CAS  Google Scholar 

  51. de Wolf W, de Bruijn JHM, Seinen W, Hermens JLM (1992) Environ Sci Technol 26: 1197

    Article  Google Scholar 

  52. Jonsson J (1992) QSAM. Thesis, Umeâ University, Umeâ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eriksson, L., Hermens, J.L.M. (1995). A Multivariate Approach to Quantitative Structure-Activity and Structure-Property Relationships. In: Einax, J. (eds) Chemometrics in Environmental Chemistry - Applications. The Handbook of Environmental Chemistry, vol 2 / 2H. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49150-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-49150-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14883-9

  • Online ISBN: 978-3-540-49150-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics