Skip to main content

Composition and Cycling of Organic Carbon in Soil

  • Chapter
Nutrient Cycling in Terrestrial Ecosystems

Part of the book series: Soil Biology ((SOILBIOL,volume 10))

Abstract

Soil organic carbon (SOC) represents a significant reservoir of carbon within the global carbon cycle that has been estimated to account for 1,200–1,550 Pg C to a depth of 1 m and for 2370–2450 Pg C to a depth of 2 m (Eswaran et al. 1995; Lal 2004a). Comparative estimates of organic C contained in living biomass (560 Pg) and atmospheric CO2-C (760 Pg) (Lal 2004a) indicate that variations in the size of the SOC store could significantly alter atmospheric CO2-C concentrations. A 5% shift in the amount of SOC stored in the 0–2 m soil profile has the potential to alter atmospheric CO2-C by up to 16%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agren GI, Bosatta E (1996) Quality: a bridge between theory and experiment in soil organic matter studies. Oikos 76:522–528

    Google Scholar 

  • Amato MA, Ladd JN (1992) Decomposition of 14C-labelled glucose and legume material in soils: properties influencing the accumulation of organic residue C and microbial biomass C. Soil Biol Biochem 24:455–464

    CAS  Google Scholar 

  • Amelung W, Zech W (1996) Organic species in ped surface and core fractions along a climosequence in the prairie, North America. Geoderma 74:193–206

    Google Scholar 

  • Amelung W, Zech W (1999) Minimisation of organic matter disruption during particle-size fractionation of grassland epipedons. Geoderma 92:73–85

    Google Scholar 

  • Amelung W, Bol R, Friedrich C (1999) Natural 13C abundance: a tool to trace the incorporation of dung-derived carbon into soil particle-size fractions. Rapid Commun Mass Spectrosc 13:1291–1294

    CAS  Google Scholar 

  • Anderson DW, Paul EA (1984) Organo-mineral complexes and their study by radiocarbon dating. Soil Sci Soc Am J 48:298–301

    CAS  Google Scholar 

  • Appuhn A, Joergensen RG, Raubuch M, Scheller E, Wilke B (2004) The automated determination of glucosamine, galactosamine, muramic acid, and mannosamine in soil and root hydrolysates by HPLC. J Plant Nutr Soil Sci 167:17–21

    CAS  Google Scholar 

  • Baisden WT, Amundson R, Cook AC, Brenner DL (2002) Turnover and storage of C and N in five density fractions from California annual grassland surface soils. Global Biogeochem Cycl 16:11–17

    Google Scholar 

  • Baldock JA (2002) Interactions of organic materials and microorganisms with minerals in the stabilization of soil structure. In: Huang PM, Bollag J-M, Senesi N (eds) Interactions between soil particles and microorganisms and the impact on the terrestrial ecosystem. Wiley, New York, pp 85–131

    Google Scholar 

  • Baldock JA, Nelson PN (2000) Soil organic matter. In: Sumner M (ed) Handbook of soil science. CRC Press, Boca Raton, pp B25–B84

    Google Scholar 

  • Baldock JA, Skjemstad JO (1999) Soil organic carbon/soil organic matter. In: Peverill KI, Sparrow LA, Reuter DJ (eds) Soil analysis: an interpretation manual. CSIRO Publishing, Collingswood, Victoria, Australia, pp 159–170

    Google Scholar 

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org Geochem 33:1093–1109

    CAS  Google Scholar 

  • Baldock JA, Oades JM, Waters AG, Peng X, Vassallo AM, Wilson MA (1992) Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry 16:1–42

    CAS  Google Scholar 

  • Baldock JA, Oades JM, Nelson PN, Skene TM, Golchin A, Clarke P (1997b) Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust J Soil Res 35:1061–1084

    Google Scholar 

  • Baldock JA, Masiello CA, Gélinas Y, Hedges JI (2004) Cycling and composition of organic matter in terrestrial and marine ecosystems. Mar Chem 92:39–64

    CAS  Google Scholar 

  • Banu NA, Singh B, Copeland L (2004) Microbial biomass and microbial biodiversity in some soils from New South Wales, Australia. Aust J Soil Res 42:777–782

    Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2002) Impact of growth stage on the bacterial community structure along maize roots, as determined by metabolic and genetic fingerprinting. Appl Soil Ecol 19:135–145

    Google Scholar 

  • Bending GD, Turner MK, Rayns F, Marx M-C, Wood M (2004) Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol Biochem 36:1785–1792

    CAS  Google Scholar 

  • Blair GJ, Lefory RDB, Lisle L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res 46:1459–1466

    Google Scholar 

  • Bond-Lamberty B, Wang C, Gower ST (2004) A global relationship between the heterotrophic and autotrophic components of soil respiration? Glob Chang Biol 10:1756–1766

    Google Scholar 

  • Boudot JP, Bel Hadi Brahim A, Chone T (1988) Dependence of carbon and nitrogen mineralisation rates upon amorphous metallic constituents and allophanes in highland soils. Geoderma 42:245–260

    CAS  Google Scholar 

  • Boudot JP, Bel Hadi Brahim A, Steiman R, Seigle-Murandi F (1989) Biodegradation of synthetic organo-metallic complexes of iron and aluminium with selected metal to carbon ratios. Soil Biol Biochem 21:961–966

    CAS  Google Scholar 

  • Brye KR, Gower ST, Norman JM, Bundy LG (2002) Carbon budgets for a prairie and agroecosystems: effects of land use and interannual variability. Ecol Appl 12:962–979

    Google Scholar 

  • Bucher AE, Lanyon LE (2005) Evaluating soil management with microbial community-level physiological profiles. Appl Soil Ecol 29:59–71

    Google Scholar 

  • Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K, Schimel DS (1989) Texture, climate and cultivation effects on soil organic matter in US grassland soils. Soil Sci Soc Am J 53:800–805

    Google Scholar 

  • Campbell CA, Paul EA, Rennie DA, McCallum KJ (1967) Applicability of the carbon-dating method of analysis to soil humus studies. Soil Sci 104:217–224

    CAS  Google Scholar 

  • Campbell CD, Chapman SJ, Cameron CM, Davidson MS, Potts JM (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl Environ Microbiol 69:3593–3599

    PubMed  CAS  Google Scholar 

  • Chefetz B, Salloum MJ, Deshmukh AP, Hatcher PG (2002) Structural components of humic acids as determined by chemical modifications and carbon-13 NMR, pyrolysis, and thermochemolysis-gas chromatography/mass spectrometry. Soil Sci Soc Am J 66:11–59

    Google Scholar 

  • Christensen BT (1996a) Carbon in primary and secondary organomineral complexes. In: Carter MR, Stewart BA (eds) Advances in soil science — structure and organic matter storage in agricultural soils, CRC Lewis, Boca Raton, pp 97–165

    Google Scholar 

  • Christensen BT (1996b) Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: revision of model structure. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models using existing long-term datasets. NATO ASI Series I: Global Environmental Change, vol 38. Springer-Verlag, Berlin Heidelberg New York, pp 143–159

    Google Scholar 

  • Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52:345–353

    CAS  Google Scholar 

  • Cortez J, Demard JM, Bottner P, Monrozier LJ (1996) Decomposition of Mediterranean leaf litters: a microcosm experiment investigating relationships between decomposition rates and litter quality. Soil Biol Biochem 28:443–452

    CAS  Google Scholar 

  • Crecchio C, Gelsomino A, Ambrosoli R, Minati JL, Ruggiero P (2004) Functional and molecular responses of soil microbial communities under differing soil management practices. Soil Biol Biochem 36:1873–1883

    CAS  Google Scholar 

  • Curtin D, Fraser PM (2003) Soil organic matter as influenced by straw management practices and inclusion of grass and clover seed crops in cereal rotations. Aust J Soil Res 41:95–106

    Google Scholar 

  • De Fede KL, Panaccione DG, Sexstone AJ (2001) Characterization of dilution enrichment cultures obtained from size-fractionated soil bacteria by BIOLOG® profiles and restriction analysis of 16S rRNA genes. Soil Biol Biochem 33:1555–1562

    Google Scholar 

  • Derenne S, Largeau C, Hatcher PG (1993) Occurrence of nonhydrolysable amides in the macromolecular constituents of Scenedemus quadricauda cell wall as revealed by 15N NMR: origin of n-alkylnitriles in pyrolysates of ultralaminae-containing kerogens. Geochim Cosmochim Acta 57:851–857

    CAS  Google Scholar 

  • Edmonds RL, Thomas TB (1995) Decomposition and nutrient release from green needles of western hemlock and pacific silver fir in an oldgrowth temperate rain forest, Olympic national park, Washington. Can J For Res 25:1049–1057

    CAS  Google Scholar 

  • Eswaran H, Van den Berg E, Reich P, Kimble JM (1995) Global soil C resources. In: Lal R, Kimble JM, Levine E, Stewart BA (eds) Soils and global change. Lewis, Boca Raton, pp 27–43

    Google Scholar 

  • Fenton TE, Kazemi M, Lauterbach-Barrett MA (2005) Erosional impact on organic matter content and productivity of selected Iowa soils. Soil Tillage Res 81:163–171

    Google Scholar 

  • Fierer N, Allen A, Schimel N, Holden P (2003) Controls on microbial CO2 production: a comparison of surface and subsurface horizons. Glob Chang Biol 9:1322–1332

    Google Scholar 

  • Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326

    Google Scholar 

  • Franzluebbers AJ (1999) Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl Soil Ecol 11:91–101

    Google Scholar 

  • Friedel JK, Scheller E (2002) Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass. Soil Biol Biochem 34:315–325

    CAS  Google Scholar 

  • Gélinas Y, Baldock JA, Hedges JI (2001) Organic carbon composition of marine sediments: effects of oxygen exposure on oil generation potential. Science 294:145–148

    PubMed  Google Scholar 

  • Giardina CP, Ryan MG, Binkley D, Fownes JH (2003) Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Glob Chang Biol 9:1438–1450

    Google Scholar 

  • Gleixner G, Czimczik CJ, Kramer C, Luehker B, Schmidt MWI (2001) Plant compounds and their turnover and stabilization as soil organic matter. In: Schulze ED, Heimann M, Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic, San Diego, pp 201–215

    Google Scholar 

  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366

    CAS  Google Scholar 

  • Golchin A, Oades JM, Skjemstad JO (1994) Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy. Aust J Soil Res 32:285–309

    CAS  Google Scholar 

  • Golchin A, Baldock JA, Oades JM (1997) A model linking organic matter decomposition, chemistry and aggregate dynamics. In: Lal R, Kimble JM, Follett RF, Stewart BA (eds) Soil processes and the carbon cycle. CRC Press, Boca Raton, pp 45–266

    Google Scholar 

  • Guggenberger G, Kaiser K (2003) Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma 113:293–310

    CAS  Google Scholar 

  • Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35:823–830

    CAS  Google Scholar 

  • Harmon ME, Bible K, Ryan MG, Shaw DC, Chen H, Klopatek J, Li X (2004) Production, respiration, and overall carbon balance in an old-growth Pseudotsuga-Tsuga forest ecosystem. Ecosystems 7:498–512

    CAS  Google Scholar 

  • Heal OW, Anderson JM, Swift MJ (1997) Plant litter quality and decomposition: an historical overview. In: Cadisch G, Giller KE (eds) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, UK pp-30

    Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115

    CAS  Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol Monogr 66:503–522

    Google Scholar 

  • Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water: fluxes and processes. Environ Pollut 84:301–324

    PubMed  CAS  Google Scholar 

  • Houghton RA (1995) Changes in the storage of terrestrial carbon since 1850. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Soils and global change. CRC Press, Boca Raton, pp 45–65

    Google Scholar 

  • Hwang J, Druffel ERM (2003) Lipid-like materials as the source of the uncharacterized organic carbon in the ocean? Science 299:881–884

    PubMed  CAS  Google Scholar 

  • Jenkins JC, Birdsey RA, Pan Y (2001) Biomass and NPP estimation for the mid-Atlantic (USA) using plot-level forest inventory data. Ecol Appl 11:1174–1193

    Google Scholar 

  • Jenkinson DS, Hart PBS, Rayner JH, Parry LC (1987) Modelling the turnover of organic matter in long-term experiments at Rothamsted. Intecol Bull 15:1–8

    Google Scholar 

  • John B, Yamashita T, Ludwig B, Flessa H (2005) Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128:63–79

    CAS  Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manage 140:227–238

    Google Scholar 

  • Johnson DW, Knoepp JD, Swank WT, Shan J, Morris LA, Van Lear DH, Kapeluck PR (2002) Effects of forest management on soil carbon: results of some long-term resampling studies. Environ Pollut 116:201–208

    Google Scholar 

  • Juste CDJLM (1975) Comparison de la stabilités biologique de différents humates metalliques. C R Acad Sci Ser D 281:1685–1688

    CAS  Google Scholar 

  • Kahle M, Kleber M, Torn MS, Jahn R (2003) Carbon storage in coarse and fine clay fractions of illitic soils. Soil Sci Soc Am J 67:1732–1739

    CAS  Google Scholar 

  • Kätterer T, Reichstein M, Andrén O, Lomander A (1998) Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biol Fertil Soils 27:258–262

    Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    CAS  Google Scholar 

  • Knicker H, Hatcher PG (1997) Survival of protein in an organic-rich sediment: possible protection by encapsulation in organic matter. Naturwissenschaften 84:231–234

    CAS  Google Scholar 

  • Knicker H, Hatcher PG (2001) Sequestration of organic nitrogen in the sapropel from Mangrove Lake, Bermuda. Org Geochem 32:733–744

    CAS  Google Scholar 

  • Knicker H, Scaroni AW, Hatcher PG (1996) 13C and 15N NMR spectroscopic investigation on the formation of fossil algal residues. Org Geochem 24:661–669

    CAS  Google Scholar 

  • Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162

    Google Scholar 

  • Kögel-Knabner I, de Leeuw JW, Hatcher PG (1992a) Nature and distribution of alkyl carbon in forest soil profiles: implications for the origin and humification of aliphatic biomacromolecules. Sci Total Environ 117/118:175–185

    Google Scholar 

  • Kögel-Knabner I, Hatcher PG, Tegelarr EW, de Leeuw JW (1992b) Aliphatic components of forest soil organic matter as determined by solid-state 13C NMR and analytical pyrolysis. Sci Total Environ 113:89–106

    Google Scholar 

  • Ladd JN, Oades JM, Amato M (1981) Microbial biomass formed from 14C, 15N-labelled plant material decomposing in soils in the field. Soil Biol Biochem 13:119–126

    CAS  Google Scholar 

  • Ladd JN, Amato M, Oades JM (1985) Decomposition of plant materials in Australian soils. III Residual organic and microbial biomass C and N from isotope-labelled legume materials and soil organic matter decomposing under field conditions. Aust J Soil Res 23:603–611

    CAS  Google Scholar 

  • Lagergren F, Eklundh L, Grelle A, Lundblad M, Mölder M, Lankreijer H, Lindroth A (2005) Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant Cell Environ 28:412–423

    Google Scholar 

  • Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450

    PubMed  CAS  Google Scholar 

  • Lal R (2004a) Agricultural activities and the global carbon cycle. Nutr Cycl Agroecosys 70:103–116

    CAS  Google Scholar 

  • Lal R (2004b) Soil carbon sequestration to mitigate climate change. Geoderma 123:1–22

    CAS  Google Scholar 

  • Lal R (2005) Soil erosion and carbon dynamics. Soil Tillage Res 81:137–142

    Google Scholar 

  • Lal R, Kimble K, Follet R, Cole C (1998) The potential of US cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor Press, Chelsea, MI

    Google Scholar 

  • Leavitt SW, Follett RF, Paul EA (1996) Estimation of slow-and fast-cycling soil organic carbon pools from 6 N HCl hydrolysis. Radiocarbon 38:231–239

    CAS  Google Scholar 

  • Lefroy RDB, Blair GJ, Strong WM (1993) Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance. Plant Soil 155/156:399–402

    Google Scholar 

  • Leifeld J, Kögel-Knabner I (2005) Soil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma 124:143–155

    CAS  Google Scholar 

  • Liu J, Chen JM, Cihlar J, Chen W (2002) Net primary productivity mapped for Canada at 1-km resolution. Global Ecol Biogeogr 11:115–129

    Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8:315–323

    Google Scholar 

  • Magid J, Mueller T, Jansen LS, Nielsen NE (1996) Modelling the measurable: interpretation of field-scale CO2 and N-mineralisation, soil microbial biomass and light fractions as indicators of oilseed rape, maize and barley straw decomposition. In: Cadisch G, Giller KE (ed) Driven by nature: plant litter quality and decomposition, CAB International, Wallingford, UK, pp 349–362

    Google Scholar 

  • Martens DA, Loeffelmann KL (2002) Improved accounting of carbohydrate carbon from plants and soils. Soil Biol Biochem 34:1393–1399

    CAS  Google Scholar 

  • Martens DA, Loeffelmann KL (2003) Soil amino acid composition quantified by acid hydrolysis and anion chromatography-pulsed amperometry. J Agric Food Chem 51:6521–6529

    PubMed  CAS  Google Scholar 

  • Martin JP, Haider K (1986) Influence of mineral colloids on turnover rates of soil organic carbon. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes, vol 17. Soil Science Society of America, Madison, pp 283–304

    Google Scholar 

  • MartÍnez AT, González-Vila AE, Valmaseda M, Dale BE, Lambregts MJ, Haw JF (1991) Solidstate NMR studies of lignin and plant polysaccharide degradation by fungi. Holzforschung 45:49–54

    Google Scholar 

  • Mayer LM (1994a) Surface area control of organic carbon accumulation in continental shelf sediments. Geochim Cosmochim Acta 58:1271–1284

    CAS  Google Scholar 

  • McCown RL, Hammer GL, Hargreaves JNG, Holzworth DP, Freebairn DM (1996) APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agric Syst 50:255–271

    Google Scholar 

  • Mendham DS, O’Connell AM, Grove TS (2002) Organic matter characteristics under native forest, long-term pasture, and recent conversion to Eucalyptus plantations in Western Australia: microbial biomass, soil respiration, and permanganate oxidation. Aust J Soil Res 40:859–872

    Google Scholar 

  • Metting F, Smith J, Amthor J (1999) Science needs and new technology for carbon sequestration. In: Rosenberg N, Izaurralde R, Malone E (eds) Carbon sequestration in soils — science, monitoring and beyond. Battelle, Columbus, pp 1–34

    Google Scholar 

  • Michalzik B, Kalbitz K, Park J-H, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen — a synthesis for temperate forests. Biogeochemistry 52:173–205

    Google Scholar 

  • Mikan C, Schimel J, Doyle A (2002) Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biol Biochem 34:1785–1795

    CAS  Google Scholar 

  • Muller PE (1887) Studien über die natürlichen Humusformen und deren Einwirkunger auf Vegetation und Boden. Springer, Berlin

    Google Scholar 

  • Muneer M, Oades JM (1989a) The role of Ca-organic interactions in soil aggregate stability. I. Laboratory studies with 14C-glucose, CaCO3 and CaSO4·2H2O. Aust J Soil Res 27:389–399

    CAS  Google Scholar 

  • Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a model. Ecosystems 4:29–48

    CAS  Google Scholar 

  • Nelson PN, Baldock JA, Oades JM (1993) Concentration and composition of dissolved organic carbon in streams in relation to catchment soil properties. Biogeochemistry 19:27–50

    Google Scholar 

  • O’Connell A (1990) Microbial decomposition (respiration) of litter in eucalypt forests of southwestern Australia: an empirical model based on laboratory incubations. Soil Biol Biochem 22:153–160

    Google Scholar 

  • Parton WJ, Schimel DC, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179

    CAS  Google Scholar 

  • Paul EA, Collins HP, Leavitt SW (2001) Dynamics of resistant soil carbon of Midwestern agricultural soils measured by naturally occurring 14C abundance. Geoderma 104:239–256

    CAS  Google Scholar 

  • Paustian K, Collins HP, Paul EA (1997) Management controls on soil carbon. In: Paul EA, Elliott ET, Paustian K, Cole CV (eds) Soil organic matter in temperate agroecosystems. Long-term experiments in North America. CRC Press, Boca Raton, pp 15–49

    Google Scholar 

  • Poirier N, Sohi SP, Gaunt JL, Mahieu N, Randall EW, Powlson DS, Evershed RP (2005) The chemical composition of measurable soil organic matter pools. Org Geochem 36:1174–1189

    CAS  Google Scholar 

  • Post W, Izaurralde R, Mann L, Bliss N (1999) Monitoring and verifying soil organic carbon sequestration. In: Rosenberg N, Izaurralde R, Malone E (eds) Carbon sequestration in soils — science, monitoring and beyond, Battelle, Columbus, pp 41–66

    Google Scholar 

  • Poulenard J, Michel JC, Bartoli F, Portal JM, Podwojewski P (2004) Water repellency of volcanic ash soils from Ecuadorian páramo: effect of water content and characteristics of hydrophobic organic matter. Eur J Soil Sci 55:487–496

    CAS  Google Scholar 

  • Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Glob Chang Biol 10:2052–2077

    Google Scholar 

  • Pressenda LCR, Aravena R, Melfi AJ, Telles ECC, Boulet R, Vanencia EPE, Tomazello M (1996) The use of carbon isotopes (C13, C14) in soil to evaluate vegetation changes during the Holocene in central Brazil. Radiocarbon 38:191–201

    Google Scholar 

  • Preston CM, Trofymow JA, Sayer BG, Niu J (1997) 13C nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot 75:1601–1613

    CAS  Google Scholar 

  • Rahn CR, Lillywhite RD (2002) A study of the quality factors affecting the short-term decomposition of field vegetable residues. J Sci Food Agric 82:19–26

    CAS  Google Scholar 

  • Reeves DW (1997) The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil Till Res 43:131–167

    Google Scholar 

  • Rethemeyer J, Kramer C, Gleixner G, John B, Yamashita T, Flessa H, Andersen N, Nadeau M-J, Grootes PM (2005) Transformation of organic matter in agricultural soils: radiocarbon concentration versus soil depth. Geoderma 128:94–105

    CAS  Google Scholar 

  • Ritchie JC, McCarty GW, Venteris ER, Kaspar TC (2005) Using soil redistribution to understand soil organic carbon redistribution and budgets. Sediment Budgets 2:3–8

    Google Scholar 

  • Rovira P, Vallejo VR (2000) Examination of thermal and acid hydrolysis procedures in characterization of soil organic matter. Commun Soil Sci Plant Anal 31:81–100

    CAS  Google Scholar 

  • Rumpel C, Seraphin A, Goebel M-O, Wiesenberg G, Gonzales-Vila F, Bachmann J, Schwark L, Michaelis W, Mariotti A, Kögel-Knabner I (2004) Alkyl C and hydrophobicity in B and C horizons of an acid forest soil. J Plant Nutr Soil Sci 167:685–692

    CAS  Google Scholar 

  • Saggar S, Parshotam A, Sparling GP, Feltham CW, Hart PBS (1996) 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy. Soil Biol Biochem 28:1677–1686

    CAS  Google Scholar 

  • Schjønning P, Thomsen IK, Møberg JP, de Jonge H, Kristensen K, Christensen BT (1999) Turnover of organic matter in differently textured soils. I. Physical characteristics of structurally disturbed and intact soils. Geoderma 89:177–198

    Google Scholar 

  • Schmidt MWI, Skjemstad JO, Gehrt E, Kögel-Knaber I (1999) Charred organic carbon in German chernozemic soils. Eur J Soil Sci 50:351–365

    Google Scholar 

  • Schmidt MWI, Skjemstad JO, Czimczik CI, Glaser B, Prentice KM, Gelinas Y, Kuhlbusch TAJ (2001) Comparative analysis of black carbon in soils. Global Biogeochem Cycl 15:163–167

    CAS  Google Scholar 

  • Schöning I, Morgenroth G, Kögel-Knabner I (2005) O/N-alkyl and alkyl C are stabilised in fine particle size fractions of forest soils. Biogeochemistry 73:475–497

    Google Scholar 

  • Schutter ME, Dick RP (2000) Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci Soc Am J 64:1659–1668

    CAS  Google Scholar 

  • Sextone AJ, Revsbech NP, Parkin TB, Tiedje JM (1985) Direct measurements of oxygen profiles and denitrification rates in soil aggregates. Soil Sci Soc Am J 49:645–651

    Google Scholar 

  • Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure SG (1996) The chemistry and nature of protected carbon in soil. Aust J Soil Res 34:251–271

    CAS  Google Scholar 

  • Skjemstad JO, Janik LJ, Taylor JA (1998) Non-living soil organic matter: what do we know about it? Aust J Exp Agric 38:667–680

    Google Scholar 

  • Skjemstad JO, Taylor JA, Janik LJ, Marvanek SP (1999a) Soil organic carbon dynamics under longterm sugarcane monoculture. Aust J Soil Res 37:151–164

    Google Scholar 

  • Skjemstad JO, Taylor JA, Smernik RJ (1999b) Estimation of charcoal (char) in soils. Commun Soil Sci Plant Anal 30:2283–2298

    CAS  Google Scholar 

  • Skjemstad JO, Reicosky DC, Wilts AR, McGowan JA (2002) Charcoal carbon in US agricultural soils. Soil Sci Soc Am J 66:1249–1255

    CAS  Google Scholar 

  • Skjemstad JO, Spouncer LR, Cowie B, Swift RS (2004) Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Aust J Soil Res 42:79–88

    CAS  Google Scholar 

  • Smith SV, Renwick WH, Buddemeier RW, Crossland CJ (2001) Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochem Cycl 15:697–707

    CAS  Google Scholar 

  • Sohi SP, Mahieu N, Arah JRM, Powlson DS, Madari B, Gaunt JL (2001) A procedure for isolating soil organic matter fractions suitable for modeling. Soil Sci Soc Am J 65:1121–1128

    CAS  Google Scholar 

  • Sohi SP, Mahieu N, Powlson DS, Madari B, Smittenberg RH, Gaunt JL (2005) Investigating the chemical characteristics of soil organic matter fractions suitable for modeling. Soil Sci Soc Am J 69:1248–1255

    CAS  Google Scholar 

  • Sollins P, Homann PCBA, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105

    Google Scholar 

  • Stallard RF (1998) Terrestrial sedimentation and carbon cycle: coupling weathering and erosion to carbon burial. Global Biogeochem Cycl 12: 231–257

    CAS  Google Scholar 

  • Stewart DW, Dwyer LM, Carrigan LL (1998) Phenological temperature response of maize. Agron J 90:73–79

    Google Scholar 

  • Swanston CW, Caldwell BA, Homann PS, Ganio L, Sollins P (2002) Carbon dynamics during a long-term incubation of separate and recombined density fractions from seven forest soils. Soil Biol Biochem 34:1121–1130

    CAS  Google Scholar 

  • Swanston CW, Torn MS, Hanson PJ, Southon JR, Garten CT, Hanlon EM, Ganio L (2005) Initial characterization of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment. Geoderma 128:52–62

    CAS  Google Scholar 

  • Tateno R, Hishi T, Takeda H (2004) Above-and below-ground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen. For Ecol Manage 193:297–306

    Google Scholar 

  • Thomsen IK, Schjønning P, Jensen B, Kristensen K, Christensen BT (1999) Turnover of organic matter in differently textured soils. II. Microbial activity as influenced by soil water regimes. Geoderma 89:199–218

    Google Scholar 

  • Trumbore SE, Zheng SH (1996) Comparison of fractionation methods for soil organic matter 14C analysis. Radiocarbon 38:219–229

    CAS  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    CAS  Google Scholar 

  • Van Tuyl S, Law BE, Turner DP, Gitelman AI (2005) Variability in net primary production and carbon storage in biomass across Oregon forests — an assessment integrating data from forest inventories, intensive sites, and remote sensing. For Ecol Manage 209:273–291

    Google Scholar 

  • van Veen JA, Kuikman PJ (1990) Soil structural aspects of decomposition of organic matter by microorganisms. Biogeochemistry 11:213–233

    Google Scholar 

  • Verburg PSJ, Arnone III JA, Obrist D, Schorran DE, Evans RD, Leroux-swarthout D, Johnson DW, Luo Y, Coleman JS (2004) Net ecosystem carbon exchange in two experimental grassland ecosystems. Glob Chang Biol 10:498–508

    Google Scholar 

  • Weiss MS, Abele U, Weekesser J, Welte W, Schlitz E, Schulz GE (1991) Molecular architecture and electrostatic properties of a bacterial porin. Science 254:1627–1630

    PubMed  CAS  Google Scholar 

  • Widmer F, Fließbach A, Laczkó E, Schulze-Aurich J, Zeyer J (2001) Assessing soil biological characteristics: a comparison of bulk soil community DNA-, PLFA-, and Biolog-analyses. Soil Biol Biochem 33:1029–1036

    CAS  Google Scholar 

  • Zheng DL, Prince S, Hame T (2004) Estimating net primary production of boreal forest in Finland and Sweden from field data and remote sensing. J Veg Sci 15:161–170

    Google Scholar 

  • Zunino H, Borie F, Aguilera S, Martin JP, Haider K (1982) Decomposition of 14C-labeled glucose, plant and microbial products and phenols in volcanic ash-derived soils of Chile. Soil Biol Biochem 14:37–43

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baldock, J.A. (2007). Composition and Cycling of Organic Carbon in Soil. In: Marschner, P., Rengel, Z. (eds) Nutrient Cycling in Terrestrial Ecosystems. Soil Biology, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68027-7_1

Download citation

Publish with us

Policies and ethics