Skip to main content

Piezoelectric PZT Ceramics

  • Chapter

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 114))

Today, the most important piezoelectric materials that are technologically important are ferroelectric ceramics based on Pb-containing perovskites. They offer the advantages of most ceramic materials such as ease of fabrication, possibility of variable and application-adapted shaping, as well as low-cost manufacturing. In addition, diverse chemical modifications are available in order to tailor the piezoelectric properties to different applications. The precondition, however, is the possibility to impose a unipolar anisotropy into the otherwise macroscopically isotropic ceramic. This is possible only if the spontaneous polarization can be oriented by a poling process using an external electric field for generating a remanent polarization. In addition, the special behaviour in the vicinity of ferroelectric phase transitions promotes extremely high piezoelectric effects, where the intrinsic ones are connected with the dielectric anisotropy and the extrinsic ones with increased domain wall mobility. Especially, in the periphery of the morphotropic phase boundary (MPB) present in a series of Pb-containing perovskites, such as lead-zirconate-titanate (PZT), this effect technically can be used extensively because the MPB in the temperature-composition phase diagram is nearly vertical, what implies nearly temperature independence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Xu, Ferroelectric Materials and Their Applications (North Holland, New York, 1991)

    Google Scholar 

  2. I.S. Jeludev, Ferroelectricity and Symmetry, Solid State Physics, vol. 26 (Academic Press, New York, 1971)

    Google Scholar 

  3. A.J. Moulsen, J.M. Herbert, Materials, Properties, Applications (Chapman & Hall, London, 1996 reprinted)

    Google Scholar 

  4. G. Arlt, Bol. Soc. Esp. Ceram. Vidrio. 34(5/6), 267–271 (1995)

    Google Scholar 

  5. N. Uchida, T. Ikeda, Jpn. J. Appl. Phys. 6(9), 1079–1088 (1967)

    Article  ADS  Google Scholar 

  6. L.E. Cross, In Ferroelectric Ceramics (Birkhäuser Verlag, Basel, 1993)

    Google Scholar 

  7. L.E. Cross, Jpn. J. Appl. Phys. 34, 2525–2532 (1995)

    Article  ADS  Google Scholar 

  8. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  9. T. Ikeda, Fundamentals of Piezoelectricity. (Oxford University Press, Oxford, 1990)

    Google Scholar 

  10. Don Berlincourt, J. Acoust. Soc. Am. 91(5), 3034–3040 (1992)

    Article  ADS  Google Scholar 

  11. V.A. Isupov, Y.u.E. Stolypin, J. Phys. Soc. Jpn. 28(Suppl.), 312 (1970)

    Google Scholar 

  12. V.A. Isupov, Ferroelectrics 46, 217–225 (1983)

    Google Scholar 

  13. G.M. Konstantinov, M.F. Kupriyanov, V.A. Serduli, A.A. Lebedinskij, S.S. Zaycev, E.G. Fesenko, J. Tech. Phys. 59(7), 80–84

    Google Scholar 

  14. M. Kupriyanov, G. Konstantinov, A. Panich, Ferroelectrics 127, 77–82 (1992)

    Google Scholar 

  15. E.G. Fesenko, A.Y.A. Dantsiger, L.A. Reznitchenko, M.F. Kupriyanov, Ferroelectrics 41, 137–142 (1982)

    Article  Google Scholar 

  16. E.G. Fesenko, A.Y.A. Dantsiger, O.N. Razumovskaya, New piezoceramic materials, in Russian: Novye p’ezoelektricheskie materialy. Univ. Rostov on Don 1983

    Google Scholar 

  17. U. Lange, Internal Report Fraunhofer ISC, 07/2000 (2000)

    Google Scholar 

  18. M.J. Hoffmann, H. Kungl, Curr. Opin. Solid State Mater. Sci. 8, 52–17 (2004)

    Google Scholar 

  19. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81(5), 677–688 (1998)

    Google Scholar 

  20. G. Arlt, Ferroelectrics 104, 217–227 (1990)

    Google Scholar 

  21. G. Helke, S. Seifert, S.J. Cho, J. Eur. Ceram. Soc. 19, 1265–1268 (1999)

    Article  Google Scholar 

  22. J.T.H. Reszat, Dissertation, (University of Karlsruhe, Germany, 2003)

    Google Scholar 

  23. G. Helke, A. Schönecker, P. Obenaus, U. Keitel, L. Seffner, T. Scholehwar, U. Lange, Paper ISAF (2000)

    Google Scholar 

  24. H. Jaffe, Proc. IEEE. 5310, 1372–1386 (1965)

    Article  Google Scholar 

  25. D.A. Berlincourt, D.R. Curran, H. Jaffe, In Physical Acoustics, vol. IA, ed. by W.P. Mason, (Academic Press, New York, 1964)

    Google Scholar 

  26. ANSI/IEEE Std 176-1987 IEEE Standard on Piezoelectricity — Description

    Google Scholar 

  27. G. Helke, Proc. EPCC 83, Liberec, CSSR

    Google Scholar 

  28. Y.A. Kvapulinskii, Z. Surovjak, M.F. Kupriyanov, S.M. Zayzev, A.Y.A. Dantsiger, E.G. Fesenko, J. Techn. Fizikoj 49, 1049–1052 (1979)

    Google Scholar 

  29. V.A. Isupov, Solid State Phys. 22, 172–177 (1980)

    Google Scholar 

  30. M. Fukuhara, A.S. Bhalla, R.E. Newnham, Phys. Stat. Sol. (a) 122, 677–682 (1990)

    Article  ADS  Google Scholar 

  31. H. Kungl, Dissertation, (University Karlsruhe, Germany, 2005

    Google Scholar 

  32. M.J. Hoffmann, H. Kungl, J.T.H. Reszat, S. Wagner, In Polar Oxides-Properties, Characterization, and Imaging (Wiley, Weinheim, 2005)

    Google Scholar 

  33. G. Helke, Teil I/II. Keram. Z 54(11), 936–942/12, 1034–1036 (2000)

    Google Scholar 

  34. European Standard EN 50324-2. Piezoelectric properties of ceramic materials and components. Part 2: Methods of measurement and properties-Low power

    Google Scholar 

  35. H. Thomann, W. Wersing, Ferroelectrics 40, 189–202 (1982)

    Google Scholar 

  36. W. Wersing, Proc.4th Intern. Meeting Electro- and Magnetoceramics, 162–182 1981

    Google Scholar 

  37. H. Banno, T. Tsunooka, Jpn. J. Appl. Phys. 6(8), 954–962 (1967)

    Article  ADS  Google Scholar 

  38. IEEE Standard Definitions of Terms Associated with Ferroelectric and Related Materials. IEEE (Draft). Trans. on Ultrasonics, Ferroelectrics, and Freq. Control (UFFC), 50(12), (December 2003)

    Google Scholar 

  39. F. Kulcsar, J. Am. Ceram. Soc. 42(1), 49–51 (1959)

    Article  Google Scholar 

  40. R.B. Atkin, R.L. Holman, R.M. Fulrath, J. Am. Ceram. Soc. 54(2), 113–115 (1971)

    Article  Google Scholar 

  41. S. Takahashi, Ferroelectrics 41, 143–156 (1982)

    Google Scholar 

  42. G. Helke, (Review, unpublished). DKG-Jahrestagung, (Annual Meeting) 08.-10.10.2001, Bayreuth

    Google Scholar 

  43. W. Rossner, K. Lubitz, G. Tomandl, Silicates Industriels 3–4, 31–34 (1985)

    Google Scholar 

  44. T.B. Weston, A.H. Webster, V.M. McNamara, J. Am. Ceram. Soc. 52(5), 252–257 (1969)

    Article  Google Scholar 

  45. A.V. Gorish, Physics of Ferroelectric Ceramics (Gordon & Breach, Moscow, 1999)

    Google Scholar 

  46. S. Takahashi, Ferroelectrics 27, 109–112 (1980)

    Article  Google Scholar 

  47. R.B. Atkin, R.M. Fulrath, J. Am. Ceram. Soc. 54(5), 265–270 (1971)

    Article  Google Scholar 

  48. W.R. Cook, H. Jaffe, Crystal and Solid State Physics, vol. 11 (Springer, New York, 1979)

    Google Scholar 

  49. DE 102 29 086 A1 Pb(Al0.5 Nb0.5)O3-PbTiO3-PbZrO3

    Google Scholar 

  50. H. Thomann, Ferroelectrics 4, 141–146 (1972)

    Google Scholar 

  51. N. Uchida, T. Ikeda, J. Appl. Phys. 6(11), 1292–1299 (1967)

    Article  Google Scholar 

  52. E.G. Fesenko, Perovskite Family and Ferroelectricity (Atomizdat, Moscow, 1972)

    Google Scholar 

  53. V.M. Goldschmidt, Geochem. Vert. Elem. VII–VIII Norsk. Vid. Akad., Math.-Naturvid. Kl., 3, 1–17 (1923)

    Google Scholar 

  54. F.S. Galasso, Structure, Properties and Preparation of Perovskite-Type Compounds (Pergamon Press, Oxford, (1969))

    Google Scholar 

  55. T. Tanaka, Ferroelectrics 40, 167–187 (1982)

    Google Scholar 

  56. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys.-Solid State 2, 2651 (1961)

    Google Scholar 

  57. H. Ouchi, M. Nishida, S. Hayakawa, J. Am. Ceram. Soc. 49(11), 577–582 (1966)

    Article  Google Scholar 

  58. DAS 1 646 690 Verbesserte piezoelektrische Keramik und Verfahren ihrer Herstellung. Pb(Mg1/3Nb2/3)O3-PbTiO3-PbZrO3

    Google Scholar 

  59. H. Ouchi, J. Am. Ceram. Soc. 49(3), 169–176 (1968)

    Article  Google Scholar 

  60. DAS 1 646 817 Piezoelektrischer Keramikwerkstoff Pb(Li1/4Nb3/4)O3-PbTiO3-PbZrO3

    Google Scholar 

  61. M. Nishida, S. Kawashima, I. Ueda, H. Ouchi, S. Hayakawa, Piezoelectric Properties of Pb((Zn1/3Nb2/3)O3-PbTiO3-PbZrO3 Ceramics Modified with MnO2 and Al2O3. Proc. 1st Meeting on Ferroelectric Materials and Their Applications F-13, 333–338. Kyoto (May 1996)

    Google Scholar 

  62. G.E. Savenkova, O.S. Didkovskaya, V.V. Klimov, Y.U.I. Venevtsev, J. N. Neorg. Mat. 7(6), 996–1000 (1971)

    Google Scholar 

  63. Brit. Patent 1 401 389 Piezoceramic Materials. [56]

    Google Scholar 

  64. H. Ouchi, K. Nagano, S. Hayakawa, J. Am. Ceram. Soc. 48(12), 630–635 (1965)

    Article  Google Scholar 

  65. Pat. US 4,313,839 Piezoceramic Material

    Google Scholar 

  66. Pat. US 3,890,241 Piezoelectric Ceramic compositions Pb[(Zn1/3Nb2/3)O3 — (Sn1/3Nb2/3)O3 — PbTiO3 — PbZrO3 + 0.05 to 5 weight % MnO2

    Google Scholar 

  67. W. Wersing, Piezoelectric Materials in Devices, ed. by N. Setter (EPFL Swiss Federal Institute of Technology, Lausanne 2002), pp. 29–66

    Google Scholar 

  68. A.I. Kingon, J.B. Clark, J. Am. Ceram. Soc. 66, 253–256 (1983)

    Article  Google Scholar 

  69. M. Hammer, M.J. Hoffmann, J. Am. Ceram. Soc. 81, 3277–3284 (1998)

    Article  Google Scholar 

  70. W. Rossner, PhD Thesis, Erlangen, 1985

    Google Scholar 

  71. E. Brzozowski, Private Communication

    Google Scholar 

  72. R.B. Atkin, M. Fulrath, J. Am. Ceram. Soc. 54, 265–270 (1971)

    Article  Google Scholar 

  73. W. Heywang, H. Thomann, Ann. Rev. Mater. Sci. 27–47 (1984)

    Google Scholar 

  74. D. Hennings, H. Pomplun, J. Am. Ceram. Soc. 57, 527–530 (1974)

    Article  Google Scholar 

  75. C.L. Huang, B.H. Chen, L. Wu, Solid State Commun. 130, 19–23 (2004)

    Article  ADS  Google Scholar 

  76. K.H. Haerdtl, H. Rau, Solid State Commun. 7, 41–45 (1969)

    Article  ADS  Google Scholar 

  77. G.H. Haertling, J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  78. S. Kim, G.F. Lee, T.R. Shrout, S. Venkataramani, J. Mater. Sci. 26, 4411–4415 (1991)

    Article  ADS  Google Scholar 

  79. M. Kulig, G. Preu, D. Cramer, K. Lubitz, Ceramics Charting the Future (P. Vincenzini, Techna, Firenze 1995), pp. 2493–2498

    Google Scholar 

  80. H. Hellebrand, Material Science and Technology, ed. by R.W. Cahn, P. Haasen, E.J. Kramer (VCH Weinheim, New York, 1996), pp. 191–265

    Google Scholar 

  81. S. Takahashi, A. Ochi, M. Yonezawa, T. Yano, Ferroelectrics 50, 181–190 (1983)

    Google Scholar 

  82. K. Lubitz, Piezoelectric Materials in Devices, ed. by N. Setter, (EPFL Swiss Federal Institute of Technology, Lausanne, 2002), pp. 183–194

    Google Scholar 

  83. G. Helke, Piezoelectricity of Ferroelectric Ceramics. Adaptronic Congress 23–24 (April 2002)

    Google Scholar 

  84. M. Laurent, PhD Thesis, (Karlsruhe, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Helke, G., Lubitz, K. (2008). Piezoelectric PZT Ceramics. In: Piezoelectricity. Springer Series in Materials Science, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68683-5_4

Download citation

Publish with us

Policies and ethics