Skip to main content

Relaxor Ferroelectrics

  • Chapter
Piezoelectricity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 114))

It is interesting to note that as with almost all initial advances in the study of ferroelectric oxides the impetus for studies of relaxor ferroelectrics stemmed from early work on polycrystalline ceramic systems. In the case of the relaxor ferroelectrics, the advance originated from studies in Professor Smolensky’s group at the Ioffe Institute in Leningrad (now St. Petersburg) on perovskite structure electroceramics of complex composition. Originally classified as ferroelectrics with diffuse phase transitions, it slowly became clear that the very high dielectric maximum being highly dispersive could not mark a classical ferroelectric phase transition. Now, following studies at Penn State University, the suggested designation as relaxor ferroelectrics has become internationally adopted. The name is nicely compact and does highlight two key features, the combination of massive dielectric relaxation with almost classical lower-temperature ferroelectric response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Samara, in Solid State Physics, vol. 56, ed. by H. Ehrenreich (Academic, New York)

    Google Scholar 

  2. G.A. Smolensky, A.I. Agranovskaya, Sov. Phys. Solid State 1429, 1959

    Google Scholar 

  3. G. Burns, F.H. Dacol, Solid State Comm. 48, 853, 1993; Phys. Rev. B 28, 2527, 1983

    Article  ADS  Google Scholar 

  4. L.E. Cross, Ferroelectrics 76, 241, 1987

    Google Scholar 

  5. N.D. Mathan, E. Husson, G. Calvarin, J.R. Gavarri, A.W. Hewat, A. Morell, J. Phys. Cond. Matter 3, 8159, 1991

    Article  ADS  Google Scholar 

  6. A. Naberezhnov, S. Vakhrushev, B. Dorner, D. Stauch, H. Moudden, Eur. Phys. J. B 11, 13, 1999

    Article  ADS  Google Scholar 

  7. D. Viehland, M.C. Kien, Z. Xu, J.F. Li, Appl. Phys. Letters 67, 2471, 1995

    Article  ADS  Google Scholar 

  8. I.K. Jeong, T.W. Darling, J.K. Lee, Th. Profiten, H. Heffner, J.S. Park, K.S. Hong, W. Dmowski, T. Egami, Phys. Rev. Lett. 94, 147602, 2005

    Article  ADS  Google Scholar 

  9. D. Viehland, S.J. Jeong, L.E. Cross, J. Appl. Phys. 68, 2916, 1990

    Article  ADS  Google Scholar 

  10. D. Viehland, J.F. Li, S.J. Jong, L.E. Cross, Phys. Rev. B 43, 8316, 1991

    Article  ADS  Google Scholar 

  11. E.V. Colla, N.K. Yuskin, D. Viehland, J. Appl. Phys. 83, 3298, 1998

    Article  ADS  Google Scholar 

  12. N. Setter, L.E. Cross, J. Appl. Phys. 51, 4356, 1980

    Article  ADS  Google Scholar 

  13. C.G.F. Stenger, F.L. Schölten, A.J. Burggraaf, Solid State Comm. 32, 989, 1979

    Article  ADS  Google Scholar 

  14. C.G.F. Stenger, A.J. Burggraaf, Phys. Stat. Solidi 61, 653, 1980

    Article  ADS  Google Scholar 

  15. F. Cho, J.M. Reaney, N. Setter, J. Am. Ceram. Soc. 78(7), 1947, 1995

    Article  Google Scholar 

  16. C.A. Randall, A.S. Bhalla, T.R. Shrout, L.E. Cross, J. Mat. Res. 5(4), 829, 1990

    Article  ADS  Google Scholar 

  17. T. Egami, Ferroelectrics, 267, 101, 2002

    Article  Google Scholar 

  18. C.A. Randall, D.J. Barber, R.W. Whatmore, J. Microscopy 145, 275, 1987

    Google Scholar 

  19. J.H. Barrett, Phy. Rev. 86, 118, 1952

    Article  ADS  Google Scholar 

  20. E. Pytte, Phys. Rev. B 5, 3758

    Google Scholar 

  21. S. Swartz, T.R. Shrout, Material Res. Bull. 17, 1245, 1980

    Article  Google Scholar 

  22. W. Pan, E. Furman, G.O. Dayton, L.E. Cross, J. Mat. Sci. Lett. 5, 647, 1986

    Article  Google Scholar 

  23. S. Nomura, H. Arima, F. Kojima, Jpn. J. Appl. Phys. 12, 531, 1973

    Article  ADS  Google Scholar 

  24. J. Kuwata, K. Uchino, S. Nomura, Ferroelectrics 37, 579, 1981

    Google Scholar 

  25. J. Kuwata, K. Uchino, S. Nomura, Jpn. J. Appl. Phys. 21, 1298, 1982

    Article  ADS  Google Scholar 

  26. S.E. Park, T.R. Shrout, J. Appl. Phys. 82, 1804, 1997

    Article  ADS  Google Scholar 

  27. L.E. Cross, P. Hana, Ninth US Japan Seminar on Dielectric and Piezoelectric Ceramics, Okinawa, November 2, 1.1.15, 1999

    Google Scholar 

  28. L.E. Cross, Fundamental Physics of Ferroelectrics, Aspen Colorado, AIP Proc 535, 1, 2000

    Google Scholar 

  29. A.A. Bokov, Z.-G. Ye, Ceram. Trans. 136, 37, 2003

    Google Scholar 

  30. H. Fu, R.E. Cohen, Nature 403, 281, 2000

    Article  ADS  Google Scholar 

  31. S. Wada, S. Suzuki, T. Noma, T. Suzuki, M. Osada, M. Kakihana, S.E. Park, L.E. Cross, T.R. Shrout, Jpn. J. Appl. Phys. Pt 1 38, 5505, 1999

    Article  Google Scholar 

  32. N. Nakamura, T. Tokiwa, Y. Kawamura, J. Appl. Phys. 91, 9272, 2002

    Article  ADS  Google Scholar 

  33. P.B. Jamiesan, S.C. Abarahams, J.L. Bernstein, J. Chem. Phys. 48, 5048, 1968

    Article  ADS  Google Scholar 

  34. K. Aziu, Phys. Rev. 146, 423, 1966

    Article  ADS  Google Scholar 

  35. L.A. Shuvalov, J. Phys. Soc. Japan 28, 38, 1970

    Google Scholar 

  36. H. Jaffe (private communication)

    Google Scholar 

  37. A. Amin, Thesis in Solid State Science, Penn State, November 1979

    Google Scholar 

  38. J. Noheda, A. Gonzalo, L.E. Cross, R. Guo, S.E. Park, D.E. Cox, G. Shirane, Phys. Rev. B 61, 8687, 2000

    Article  ADS  Google Scholar 

  39. M.J. Hoffman, H. Kungl, J-Th. Reszat, S. Wagner, in Polar Oxides Properties, Characterization, and Imaging, ch. 7, p. 137, ed. by R. Waser, U. Böttger, S. Tiedke (Wiley-VCH)

    Google Scholar 

  40. D. Damjanovic, F. Brem, N. Setter, Appl. Phys. Lett. 80(4) 652, 2002

    Article  ADS  Google Scholar 

  41. S. Wada, K. Muraoka, H. Kakemoto, T. Tsurumi, H. Kwmagai, Jpn. J. Appl. Phys. 40(98), 5690, 2000

    Google Scholar 

  42. S. Wada, T. Tsurumi, Br. Ceram. Trans. 103, 93, 2004

    Article  Google Scholar 

  43. S. Wada, K. Yaho, K. Yakoo, T. Tsurumi, in Proceedings of 12th US:Japan Seminar on Dielectric and Piezoelectric Ceramics, Annapolis, MD, November 2005, 177

    Google Scholar 

  44. Y.M. Jin, Y.U. Wang, A.G. Khachaturyan, J. Appl. Phys. 94, 3629, 2003

    Article  ADS  Google Scholar 

  45. D. Viehland, J. Appl. Phys. 88, 4794, 2000

    Article  ADS  Google Scholar 

  46. Z. Kutnjak, J. Petzelt, R. Blinc, Nature 441, 956, 2006

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cross, L.E. (2008). Relaxor Ferroelectrics. In: Piezoelectricity. Springer Series in Materials Science, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68683-5_5

Download citation

Publish with us

Policies and ethics