Skip to main content

Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations

  • Conference paper
Automata, Languages and Programming (ICALP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5125))

Included in the following conference series:

Abstract

Modular decomposition is fundamental for many important problems in algorithmic graph theory including transitive orientation, the recognition of several classes of graphs, and certain combinatorial optimization problems. Accordingly, there has been a drive towards a practical, linear-time algorithm for the problem. This paper posits such an algorithm; we present a linear-time modular decomposition algorithm that proceeds in four straightforward steps. This is achieved by introducing the notion of factorizing permutations to an earlier recursive approach. The only data structure used is an ordered list of trees, and each of the four steps amounts to simple traversals of these trees. Previous algorithms were either exceedingly complicated or resorted to impractical data-structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Capelle, C., Habib, M., de Montgolfier, F.: Graph decompositions and factorizing permutations. Discrete Mathematics and Theoretical Computer Science 5, 55–70 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Chein, M., Habib, M., Maurer, M.C.: Partitive hypergraphs. Discrete Mathematics 37, 35–50 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM Journal of Computing 14, 926–934 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cournier, A., Habib, M.: A new linear algorithm of modular decomposition. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 68–84. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  5. Cowan, D.D., James, L.O., Stanton, R.G.: Graph decomposition for undirected graphs. In: 3rd S-E Conference on Combinatorics, Graph Theory and Computing, Utilitas Math., pp. 281–290 (1972)

    Google Scholar 

  6. Dahlhaus, E.: Efficient parallel algorithms for cographs and distance hereditary graphs. Discrete Applied Mathematics 57, 29–54 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Efficient and practical algorithm for sequential modular decomposition algorithm. Journal of Algorithms 41(2), 360–387 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Figueiredo, C.M.H., Maffray, F.: Optimizing bull-free perfect graphs. SIAM J. Discret. Math. 18(2), 226–240 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ehrenfeucht, A., Gabow, H.N., McConnell, R.M., Sullivan, S.L.: An O(n 2) divide-and-conquer algorithm for the prime tree decomposition of two-structures and modular decomposition of graphs. Journal of Algorithms 16, 283–294 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. In: STOC 1983: Proceedings of the fifteenth annual ACM symposium on Theory of computing, pp. 246–251. ACM Press, New York (1983)

    Chapter  Google Scholar 

  11. Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition of protein-protein interaction networks. Genome Biology 5(8), R57 (2004)

    Article  Google Scholar 

  12. Gallai, T.: Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hungar. 18, 25–66 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  13. Habib, M., de Montgolfier, F., Paul, C.: A simple linear-time modular decomposition algorithm for graphs, using order extension. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 187–198. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Habib, M., Maurer, M.C.: On the x-join decomposition of undirected graphs. Discrete Applied Mathematics 1, 201–207 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Habib, M., Paul, C., Viennot, L.: A synthesis on partition refinement: a useful routine for strings, graphs, boolean matrices and automata. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 25–38. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  16. McConnell, R.M., Spinrad, J.: Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In: 5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 536–545 (1994)

    Google Scholar 

  17. McConnell, R.M., Spinrad, J.: Ordered vertex partitioning. Discrete Mathematics and Theoretical Computer Science 4, 45–60 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Möhring, R.H.: Algorithmic aspects of comparability graphs and interval graphs. In: Rival, I. (ed.) Graphs and Orders, pp. 41–101. D. Reidel, Boston (1985)

    Chapter  Google Scholar 

  19. Möhring, R.H.: Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and boolean functions. Annals of Operations Research 4, 195–225 (1985)

    Article  MathSciNet  Google Scholar 

  20. Möhring, R.H., Radermacher, F.J.: Substitution decomposition for discrete structures and connections with cominatorial optimization. Annals of Discrete Mathematics 19, 257–356 (1984)

    MATH  Google Scholar 

  21. Muller, J.H., Spinrad, J.: Incremental modular decomposition. Journal of the ACM 36(1), 1–19 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Papadopoulos, C., Voglis, C.: Drawing graphs using modular decomposition. In: Healy, P., Nikolov, N.S. (eds.) Graph Drawing, Limerick, Ireland, September 12-14, 2005, pp. 343–354. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  23. Pnueli, A., Even, S., Lempel, A.: Transitive orientation of graphs and identification of permutation graphs. Canad. J. Math. 23, 160–175 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tedder, M., Corneil, D., Habib, M., Paul, C. (2008). Simpler Linear-Time Modular Decomposition Via Recursive Factorizing Permutations. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds) Automata, Languages and Programming. ICALP 2008. Lecture Notes in Computer Science, vol 5125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70575-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70575-8_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70574-1

  • Online ISBN: 978-3-540-70575-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics