Skip to main content

Quantitative Colocalisation Imaging: Concepts, Measurements, and Pitfalls

  • Chapter

Part of the book series: Principles and Practice ((PRINCIPLES))

Many questions in cell biology and biophysics involve the quantitation of the colocalisation of proteins tagged with different fluorophores and their interaction. However, the incomplete separation of the different colour channels due to the presence of autofluorescence, along with cross-excitation and emission ‘bleed-through’ of one colour channel into the other, all combine to render the interpretation of multiband images ambiguous. Traditionally often used in a qualitative manner by simply overlaying fluorescence images (‘red plus green equals yellow’), multicolour fluorescence is increasingly moving away from static dual-colour images towards more quantitative studies involving the investigation of dynamical three-dimensional interaction of proteins tagged with different fluorophores in live cells. Quantifying fluorescence resonance energy transfer efficiency, fluorescence complementation and colour merging following photoactivation or photoswitching provide related examples in which quantitative image analysis of multicolour fluorescence is required. Despite its widespread use, reliable standards for evaluating the degree of spectral overlap in multicolour fluorescence and calculating quantitative colocalisation estimates are missing. In this chapter, using a number of intuitive yet practical examples, we discuss the factors that affect image quality and study their impact on the measured degree of colocalisation. We equally compare different pixel-based and object-based descriptors for analysing colocalisation of spectrally separate fluorescence. Finally, we discuss the use of spectral imaging and linear unmixing to study the presence in a ‘mixed pixel’ of spectrally overlapping fluorophores and discuss how this technique can be used to provide quantitative colocalisation information in more complex experimental scenarios in which classic dual- or triple-colour fluorescence would produce erroneous results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akner GM, K., Wilkström A, Sundqvist K, Gustafsson J (1991) Evidence for co-localisation of glucocorticoid receptor with cytoplasmic microtubules in human gingival fibroblasts, using two monoclonal anti-GR antibodies, confocal microscopy and image analysis. J Steroid Biochem Mol Biol 39:419–432.

    Google Scholar 

  • Allen MW, Bieber Urbauer RJ, Zaidi A, Williams TD, Urbauer JL, Johnson CK (2003) Fluorescence labeling, purification, and immobilization of a double cysteine mutant calmodulin fusion protein for single-molecule experiments. Anal Biochem 325:273–284.

    Article  Google Scholar 

  • Axelrod D (2001) Selective imaging of surface fluorescence with very high aperture microscope objectives. J Biomed Opt 6:6–13.

    Article  CAS  PubMed  Google Scholar 

  • Bacia K, Kim SA, Schwille P (2006) Fluorescence cross-correlation spectroscopy in living cells. Nat Methods 3:83–89.

    Article  CAS  PubMed  Google Scholar 

  • Beaurepaire E, Mertz J (2002) Epifluorescence collection in two-photon microscopy. Appl Opt 41:5376–5982.

    Article  PubMed  Google Scholar 

  • Becherer U, Moser T, Stuhmer W, Oheim M (2003) Calcium regulates exocytosis at the level of single vesicles. Nat Neurosci 6:846–853.

    Article  CAS  PubMed  Google Scholar 

  • Berezovska O, Ramdya P, Skoch J, Wolfe MS, Bacskai BJ, Hyman BT (2003) Amyloid precursor protein associates with a nicastrin-dependent docking site on the presenilin 1-l-secretase complex in cells demonstrated by fluorescence lifetime imaging. J Neurosci 23:4560–4566.

    CAS  PubMed  Google Scholar 

  • Betz WJ, Mao F, Smith CB (1996) Imaging exocytosis and endocytosis. Curr Opin Neurobiol 6:365–371.

    Article  CAS  PubMed  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645.

    Article  CAS  PubMed  Google Scholar 

  • Blazer-Yost BL, Butterworth M, Hartman AD, Parker GE, Faletti CJ, Els WJ, Rhodes SJ (2001) Characterization and imaging of A6 epithelial cell clones expressing fluorescently labeled ENaC subunits. Am J Physiol Cell Physiol 281:C624–632.

    CAS  PubMed  Google Scholar 

  • Brismar H, Uifhake B (1997) Fluorescence lifetime measurements in confocal microscopy of neurons labeled with multiple fluorophores. Nat Biotechnol 15:373–377.

    Article  CAS  PubMed  Google Scholar 

  • Brown CM, Roth MG, Henis YI, Petersen NO (1999) An internalization-competent influenza hemagglutinin mutant causes the redistribution of AP-2 to existing coated pits and is colocalized with AP-2 in clathrin free clusters. Biochemistry 38:15166–15173.

    Article  CAS  PubMed  Google Scholar 

  • Brumback AC, Lieber JL, Angleson JK, Betz WJ (2004) Using FM1–43 to study neuropeptide granule dynamics and exocytosis. Methods 33:287–294.

    Article  CAS  PubMed  Google Scholar 

  • Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81:2378–2388.

    Article  CAS  PubMed  Google Scholar 

  • Chudakov DM, Chepurnykh TV, Belousov VV, Lukyanov S, Lukyanov KA (2006) Fast and precise protein tracking using repeated reversible photoactivation. Traffic 7:1304–1310.

    Article  CAS  PubMed  Google Scholar 

  • Churchman LS, Okten Z, Rock RS, Dawson JF, Spudich JA (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. Proc Natl Acad Sci USA 102:1419–1423.

    Article  CAS  PubMed  Google Scholar 

  • Churchman LS, Flyvbjerg H, Spudich JA (2006) A non-Gaussian distribution quantifies distances measured with fluorescence localization techniques. Biophys J 90:668–671.

    Article  CAS  PubMed  Google Scholar 

  • Comeau JWD, Costantino S, Wiseman PW (2006) A guide to accurate fluorescence microscopy colocalization measurements. Biophys J 91:4611–4622.

    Article  CAS  PubMed  Google Scholar 

  • Cubitt AB, Heim R, Wollenweber LA (1999) Understanding structure-function relationships in the Aequorea victoria green fluorescent protein. In: Sullivan KF, Kay SA (eds) Green fluorescent proteins, vol. 58. Academic, San Diego, pp 19–33.

    Chapter  Google Scholar 

  • Demandolx D, Davoust J (1997) Multicolour analysis and local image correlation in confocal microscopy. J Microsc 185:21–36.

    Article  Google Scholar 

  • Dufour A, Shinin V, Tajbakhsh S, Guillen-Aghion N, Olivio-Marin JC, Zimmer C (2005) Segmenting and tracking fluorescent cells in dynamic 3-D microscopy with coupled active surfaces. IEEE Trans Image Proc 14:1396–1410.

    Article  Google Scholar 

  • Ecker RC, de Martin R, Steiner GE, Schmid JA (2004) Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis. Cytometry A 59:172–181.

    Article  PubMed  Google Scholar 

  • Finley KR, Davidson AE, Ekker SC (2001) Three-color imaging using fluorescent proteins in living zebrafish embryos. BioTechniques 31:66–70.

    CAS  PubMed  Google Scholar 

  • Friedman LJ, Chung J, Gelles J (2006) Viewing dynamic assembly of molecular complexes by multi-wavelength single-molecule fluorescence. Biophys J 91:1023–1031.

    Article  CAS  PubMed  Google Scholar 

  • Garcia Peñarrubia P, Férez Ruiz X, Galvez J (2005) Quantitative analysis of the factors that affect the determination of colocalization coefficients in dual-color confocal images. IEEE Trans Image Proc 14:1–8.

    Article  Google Scholar 

  • Gennerich A, Schild D (2005) Sizing-up finite fluorescent particles with nanometer-scale precision by convolution and correlation image analysis. Eur Biophys J 34:181–199.

    Article  PubMed  Google Scholar 

  • Ghosh RN, Webb WW (1994) Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J 66:1301–1318.

    Article  CAS  PubMed  Google Scholar 

  • Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312:217–224.

    Article  CAS  PubMed  Google Scholar 

  • Gonzales RC, Wintz P (1987) Digital image processing. Adisson-Wesley, Reading.

    Google Scholar 

  • Griesbeck O (2004) Fluorescent proteins as sensors for cellular functions. Curr Opin Neurobiol 14:636–641.

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Di WL, Kelsell DP, Zicha D (2004) Quantitative fluorescence resonance energy transfer (FRET) measurement with acceptor photobleaching and spectral unmixing. J Microsc 215:162–173.

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102:13081–13086.

    Article  CAS  PubMed  Google Scholar 

  • Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci USA 93:6264–6268.

    Article  CAS  PubMed  Google Scholar 

  • Hebert TE, Gales C, Rebois RV (2006) Detecting and imaging protein-protein interactions during g protein-mediated signal transduction in vivo and in situ by using fluorescence-based techniques. Cell Biochem Biophys 454:85–109.

    Article  Google Scholar 

  • Heilemann M, Herten D-P, Heintzmann R, Cremer C, Müller C, Tinnefeld P, Weston KD, Wolfrum J, Sauer M (2002) High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. Anal Chem 74:3511–3517.

    Article  CAS  PubMed  Google Scholar 

  • Heinlein T, Biebricher P, Schlüter C, Roth M, Herten D-P, Wolfrum J, Heilemann M, Müller C, Tinnefeld P, Sauer M (2005) High-resolution colocalization of single molecules within the resolution gap of far-field microscopy. ChemPhysChem 6:949–955.

    Article  CAS  PubMed  Google Scholar 

  • Heinze K, Jahnz M, Schwille P (2004) Triple-color coincidence analysis: One step further in following higher order molecular complex formation. Biophys J 86:506–516.

    Article  CAS  PubMed  Google Scholar 

  • Henkel AW, Lübke J, Betz WJ (1996) Fm1–43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc Natl Acad Sci USA 93:1918–1923.

    Article  CAS  PubMed  Google Scholar 

  • Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy (FPALM). Biophys J 91:4258–4272.

    Article  CAS  PubMed  Google Scholar 

  • Hirrlinger PG, Scheller A, Braun C, Quintela-Schneider M, Fuss B, Hirrlinger J, Kirchhoff F (2005) Expression of red coral fluorescent proteins in the central nervous system of transgenic mice. Mol Cell Neurosci 30:291–303.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann M, Eggeling C, Jakobs S, Hell SW (2005) Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. Proc Natl Acad Sci USA 102:17565–17569.

    Article  CAS  PubMed  Google Scholar 

  • Hu C-D, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798.

    Article  CAS  PubMed  Google Scholar 

  • Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395.

    Article  CAS  PubMed  Google Scholar 

  • Jomphe C, Bourque M-J, Fortin GD, St-Gelais F, Okano H, Kobayashi K, Trudeau L-E (2005) Use of TH-EGFP transgenic mice as a source of identified dopaminergic neurons for physiological studies in postnatal cell culture. J Neurosci Methods 146:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Karakikes I, Barber RE, Morrison IEG, Fernandez N, Cherry RJ (2003) Co-localization of cell surface receptors at high spatial resolution by single-particle fluorescence imaging. Biochem Soc Trans 31:1453–1455.

    Article  CAS  PubMed  Google Scholar 

  • Kerppola TK (2006) Visualization of molecular interactions by fluorescence complementation. Nat Rev Mol Cell Biol 7:449–456.

    Article  CAS  PubMed  Google Scholar 

  • Kozubek M, Matula P (2000) An efficient algorithm for measurement and correction of chromatic aberrations in fluorescence microscopy. J Microsc 200:206–217.

    Article  CAS  PubMed  Google Scholar 

  • Kruse FA, Lefkoff AB, Boardman JW, Heiderecth KB, Shapiro AT, Barloon JP, Goetz AF (1993) The spectral image processing system (SIPS)–interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163.

    Article  Google Scholar 

  • Lacoste TD, Michalet X, Pinaud F, Chemla DS, Alivisatos AP, Weiss S (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Aacd Sci USA 97:9461–9466.

    Article  CAS  Google Scholar 

  • Landmann L (2002) Deconvolution improves colocalization analysis of multiple fluorochromes in 3D confocal data sets more than filtering techniques. J Microsc 208:134–147.

    Article  CAS  PubMed  Google Scholar 

  • Li D, Xiong J, Qu A, Xu T (2004) Three-dimensional tracking of single secretory granules in live PC12 cells. Biophys J 87:1991–2001.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ying L, Green JJ, Basasubrananian S, Klenerman D (2003) Ultrasensitive coincidence fluorescence detection of single DNA molecules. Anal Chem 75:1664–1670.

    Article  CAS  PubMed  Google Scholar 

  • Lowy RJ (1995) Evaluation of triple-band filters for quantitative epifluorescence microscopy. J Microsc 178:240–250.

    CAS  PubMed  Google Scholar 

  • Lynch RM, Fogarty KE, Fay FS (1991) Modulation of hexokinase association with mitochondria analyzed with quantitative three-dimensional confocal microscopy. J Cell Biol 112:385–395.

    Article  CAS  PubMed  Google Scholar 

  • Manders EM, Stap J, Brakenhoff GJ, van Driel R, Aten JA (1992) Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy. J Cell Sci 103:857–862.

    CAS  PubMed  Google Scholar 

  • Manders EM, Verbeek FJ, Aten JA (1993) Measurement of co-localization of objects in dual-colour confocal images. J Microsc 169:375–382.

    Google Scholar 

  • Manders EM, Hoebe R, Strackee J, Vossepoel AM, Aten JA (1996) Largest-contour segmentation: a tool for the localization of spots in cofocal images. Cytometry 23:15–21.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Arca S, Rudge R, Vacca M, Raposo G, Camonis J, Proux-Gillardeaux V, Daviet L, Formstecher E, Hamburger A, Filippini F, D’Esposito M, Galli T (2003) A dual mechanism controlling the localization and function of exocytic v-SNAREs. Proc Natl Acad Sci USA 100:9011–9016.

    Article  CAS  PubMed  Google Scholar 

  • Messler P, Harz H, Uhl R (1996) Instrumentation for multiwavelengths excitation imaging. J Neurosci Methods 69:137–147.

    Article  CAS  PubMed  Google Scholar 

  • Michalet X, Lacoste TD, Weiss S (2001) Ultrahigh-resolution colocalization of spectrally separable point-like fluorescent probes. Methods 25:87–102.

    Article  CAS  PubMed  Google Scholar 

  • Miyashita T (2004) Confocal microscopy for intracellular co-localization of proteins. In: Fu H (ed) Protein-protein interactions methods and applications, vol 261. Humana, Totowa, pp 399–410.

    Google Scholar 

  • Miyawaki A (2005) Innovations in the imaging of brain functions using fluorescent proteins. Neuron 48:189–199.

    Article  CAS  PubMed  Google Scholar 

  • Morrison IEG, Karakikes I, Barber RE, Fernandez N, Cherry RJ (2003) Detecting and quantifying colocalization of cell surface molecules by single particle fluorescence imaging. Biophys J 85:4110–4121.

    Article  CAS  PubMed  Google Scholar 

  • Nadrigny F, Rivals I, Hirrlinger PG, Koulakoff A, Personnaz L, Vernet M, Allioux M, Chaumeil M, Ropert N, Giaume C, Kirchhoff F, Oheim M (2006) Detecting fluorescent protein expression and colocalisation on single secretory vesicles with linear spectral unmixing. Eur Biophys J 35:533–547.

    Article  CAS  PubMed  Google Scholar 

  • Nadrigny F, Li D, Kemnitz K, Ropert N, Koulakoff A, Rudolph S, Vitali M, Giaume C, Kirchhoff F, Oheim M. Systematic Co-localization Errors between Acridine Orange and EGFP in Astrocyte Vesicular Organelles. Biophys J. 2007 Apr 6; [Epub ahead of print].

    Google Scholar 

  • Neher R, Neher E (2004a) Optimizing imaging parameters for the separation of multiple labels in a fluorescence image. J Microsc 213:46–62.

    Article  CAS  PubMed  Google Scholar 

  • Neher RA, Neher E (2004b) Applying spectral fingerprinting to the analysis of fret images. Microsc Res Tech 64:185–195.

    Article  PubMed  Google Scholar 

  • Neteler M, Grasso D, Michelazzi I, Miori L, Merler S, Furlanello C (2004) New image processing tools for grass. In: Proceedings of FOSS/GRASS user conference 2004, Bangkok, Thailand.

    Google Scholar 

  • Oheim M, Loerke D, Stühmer W, Chow RH (1999) Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles. Eur Biophys J 28:91–101.

    Article  CAS  PubMed  Google Scholar 

  • Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S (2001) Two-photon microscopy in brain tissue: Parameters influencing the imaging depth. J Neurosci Methods 111:29–37.

    Article  CAS  PubMed  Google Scholar 

  • Oheim M, Li D, Luccardini C, Yakovlev A (2007) Online resource for calculating the spectral separabilty index Xijk. http://www.biomedicale.univ-paris5.fr/neurophysiologie/Groups/oheimropertgroup.php. Cited 4 Apr 2007.

  • Oshiro M, Moomaw B (2003) Cooled vs. intensified vs. electron bombardment CCD cameras–applications and relative advantages. Methods Cell Biol 72:133–156.

    Article  PubMed  Google Scholar 

  • Patterson GH, Knobel SM, Sharif WD, Kain SR, Piston DW (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys J 73:2782–2790.

    Article  CAS  PubMed  Google Scholar 

  • Piehler J (2005) New methodologies for measuring protein interactions in vivo and in vitro. Curr Opin Struct Biol 15:4–14.

    Article  CAS  PubMed  Google Scholar 

  • Rappoport JZ, Taha BW, Lemeer S, Benmerah A, Simon SM (2003) The AP-2 complex is excluded from the dynamic population of plasma membrane-associated clathrin. J Biol Chem 278:47357–47360.

    Article  CAS  PubMed  Google Scholar 

  • Rodgers W (2002) An automated method for quantifying fluorophore colocalization in fluorescence double-labeling experiments. BioTechniques 32:28–34.

    CAS  PubMed  Google Scholar 

  • Schultz C, Schleifenbaum A, Goedhart J, Gadella TW Jr (2005) Multiparameter imaging for the analysis of intracellular signaling. Chembiochem 8:1323–1330.

    Article  Google Scholar 

  • Schwille P, Meyer-Almes FJ, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886.

    Article  CAS  PubMed  Google Scholar 

  • Shaner N, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909.

    Article  CAS  PubMed  Google Scholar 

  • Sharp MD, Pogliano K (1999) An in vivo membrane fusion assay implicates spoiiie in the final stages of engulfment during Bacillus subtilis sporulation. Proc Natl Acad Sci USA 96:14553–14558.

    Article  CAS  PubMed  Google Scholar 

  • Sheppard CJR, Gan X, Gu M, Roy M (1995) Signal-to-noise in confocal microscopes. In: Pawley JB (ed) Handbook of confocal microscopy Plenum, New York.

    Google Scholar 

  • Shoji J-Y, Arioka M, Kitamoto K (2006) Vacuolar membrane dynamics in the filamentous fungus Aspergillus oryzae. Eukaryot Cell 5:411–421.

    Article  CAS  PubMed  Google Scholar 

  • Shrestha DP, Margate DE, van der Meer F, Anh HV (2005) Analysis and classification of hyperspectral data for mapping land degradation: an application in southern Spain. Int J Appl Earth Obs Geoinf 7:85–96.

    Article  Google Scholar 

  • Silver MA, Stryker MP (2000) A method for measuring colocalization of presynaptic markers with anatomically labelled axons using double label immunofluorescence and confocal microscopy. J Neurosci Methods 94:205–215.

    Article  CAS  PubMed  Google Scholar 

  • Smallcombe A (2001) Multicolor imaging: the important question of co-localization. BioTechniques 30:1240–1246.

    CAS  PubMed  Google Scholar 

  • Stauffer TP, Meyer T (1997) Compartmentalized IgE receptor-mediated signal transduction in living cells. J Cell Biol 139:1447–1457.

    Article  CAS  PubMed  Google Scholar 

  • Theer P, Hasan MT, Denk W (2003) Two-photon imaging to a depth of 1000 microns in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 28:1022–1024.

    Article  CAS  PubMed  Google Scholar 

  • Tyler WJ, Zhang X-L, Hartman K, Winterer J, Muller W, Stanton PK, Pozzo-Miller L (2006) Bdnf increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses. J Physiol 574:787–803.

    Article  CAS  PubMed  Google Scholar 

  • Wahl M, Koberling F, Patting M, Rahn H, Erdmann R (2004) Time-resolved confocal fluorescence imaging and spectrocopy system with single molecule sensitivity and sub-micrometer resolution. Curr Pharm Biotechnol 5:299–308.

    Article  CAS  PubMed  Google Scholar 

  • Wessendorf MW, Brelje TC (1992) Which fluorophore is brightest? A comparison off the staining obtained using fluorescein, tetramethylrhodamine, lissamine rhodamine, Texas Red, and cyanine 3.18. Histochemistry 98:81–85.

    Article  CAS  PubMed  Google Scholar 

  • Willig KI, Kellner RR, Medda R, Hein B, Jakobs S, Hell SW (2006) Nanoscale resolution in GFP-based microscopy. Nat Methods 3:721–723.

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Kim SHH, Macmillan S, Truant R (2006) Practical three color live cell imaging by widefield microscopy. Biol Proc Online 8:63–68.

    Article  CAS  Google Scholar 

  • Yang J, Chen H, Vlahov IR, Cheng J-X, Low PS (2006) Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. Proc Natl Acad Sci USA 103:13872–13877.

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Musser SM (2006) Visualizing single molecules interacting with nuclear pore complexes by narrow-field epifluorescence microscopy. Methods 39:316–328.

    Article  CAS  PubMed  Google Scholar 

  • Yeh HC, Chao SY, Ho YP, Wang TH (2005) Single-molecule detection and probe strategies for rapid and ultrasensitive genomic detection. Curr Pharm Biotechnol 6:453–461.

    Article  CAS  PubMed  Google Scholar 

  • Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin v walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. Adv Biochem Eng Biotechnol 95:245–265.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oheim, M., Li, D. (2007). Quantitative Colocalisation Imaging: Concepts, Measurements, and Pitfalls. In: Shorte, S.L., Frischknecht, F. (eds) Imaging Cellular and Molecular Biological Functions. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71331-9_5

Download citation

Publish with us

Policies and ethics