Skip to main content

Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes

  • Chapter
Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 111))

Abstract

The discovery of Novoselov et al. (2004) of a simple method to transfer a singleatomic layer of carbon from the c-face of graphite to a substrate suitable for themeasurement of its electrical and optical properties has led to a renewed interest inwhat was considered to be before that time a prototypical, yet theoretical,two-dimensional system. Indeed, recent theoretical studies of graphene reveal that thelinear electronic band dispersion near the Brillouin zone corners gives rise to electronsand holes that propagate as if they were massless fermions and anomalous quantumtransport was experimentally observed. Recent calculations and experimentaldetermination of the optical phonons of graphene reveal Kohn anomaliesat high-symmetry points in the Brillouin zone. They also show that theBorn–Oppenheimer principle breaks down for doped graphene. Since a carbonnanotube can be viewed as a rolled-up sheet of graphene, these recent theoretical andexperimental results on graphene should be important to researchers working oncarbon nanotubes. The goal of this contribution is to review the exciting newsabout the electronic and phonon states of graphene and to suggest howthese discoveries help understand the properties of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • P. R. Wallace: The band theory of graphite, Phys. Rev. 71, 622 (1947)

    Google Scholar 

  • L. M. Viculis, J. J. Mack, R. B. Kaner: A chemical route to carbon nanoscrolls, Science 299, 1361 (2003)

    Google Scholar 

  • L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, R. B. Kaner: Intercalation and exfoliation routes to graphite nanoplatelets, J. Mater. Chem. 15, 974 (2005)

    Google Scholar 

  • S. Niyogi, E. Bekyarova, M. E. Itkis, J. L. McWilliams, M. A. Hammon, R. C. Haddon: Solution properties of graphite and graphene, J. Am. Chem. Soc. 128, 7720 (2006)

    Google Scholar 

  • S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhass, E. J. Zimmey, E. A. Stach, R. D. Piner, S.-B. T. Nguyen, R. S. Ruoff: Graphene-based composite materials, Nature 442, 282 (2006)

    Google Scholar 

  • S. Stankovich, R. D. Piner, X. Chen, N. Wu, T. Nguyen, R. S. Ruoff: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), J. Mater. Chem. 16, 155 (2006)

    Google Scholar 

  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, S. V. Dubonos, I. V. Girgorieva, A. A. Firsov: Electric field effect in atomically thin carbon films, Science 306, 666 (2004)

    Google Scholar 

  • Y. B. Zhang, J. P. Small, W. V. Pontius, P. Kim: Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices, Appl. Phys. Lett. 86, 073104 (2005)

    Google Scholar 

  • I. Forbeaux, J. M. Themlin, J. M. Debever: High-temperature graphitization of the 6{H}-{S}i{C} (000(1)over-bar) face, Surf. Sci. 442, 9 (1999)

    Google Scholar 

  • C. Berger, Z. M. Song, T. B. Li, X. B. Li, A. Y. Ogbazghi, R. Feng, Z. T. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer: Ultrathin epitaxial graphite: 2{D} electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B 108, 19912 (2004)

    Google Scholar 

  • T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg: Controlling the electronic structure of bilayer graphene, Science 313, 951 (2006)

    Google Scholar 

  • E. Rolling, G. H. Gweon, S. Y. Zhou, B. S. Mun, J. L. McChesney, B. S. Hussain, A. Fedorov, P. N. First, W. A. de Heer, A. Lanzara: Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate, J. Phys. Chem. Solids 67, 2172 (2006)

    Google Scholar 

  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Girgorieva, S. V. Dubonos, A. A. Firsov: Two-dimensional gas of massless {D}irac fermions in graphene, Nature 438, 197 (2005)

    Google Scholar 

  • Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim: Experimental observation of the quantum {H}all effect and {B}erry's phase in graphene, Nature 438, 201 (2005)

    Google Scholar 

  • A. K. Geim, K. S. Novoselov: The rise of graphene, Nature Mater. 6, 183 (2007)

    Google Scholar 

  • M. Born, R. Oppenheimer: Ann. Phys. 84, 457 (1927)

    Google Scholar 

  • S. Pisana, M. Lazzeri, C. Casiraghi, K. Novoselov, A. K. Geim, A. C. Ferrari, F. Mauri: Breakdown of the adiabatic {B}orn–{O}ppenheimer approximation in graphene, Nature Mater. 6, 198 (2007)

    Google Scholar 

  • S. Piscanec, M. Lazzeri, F. Mauri, A. Ferrari, J. Robertson: Kohn anomalies and electron–phonon interactions in graphite, Phys. Rev. Lett. 93, 185503 (2004)

    Google Scholar 

  • S. Piscanec, M. Lazzeri, J. Robertson, A. C. Ferrari, F. Mauri: Optical phonons in carbon nanotubes: Kohn anomalies, {P}eierls distortions, and dynamic effects, Phys. Rev. B 75, 035427 (2007)

    Google Scholar 

  • M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson: Phonon linewidths and electron–phonon coupling in graphite and nanotubes, Phys. Rev. B 73, 155426 (2006)

    Google Scholar 

  • M. Lazzeri, S. Piscanec, F. Mauri, A. C. Ferrari, J. Robertson: Electron transport and hot phonons in carbon nanotubes, Phys. Rev. Lett. 95, 236802 (2005)

    Google Scholar 

  • N. Caudal, A. M. Saitta, M. Lazzeri, F. Mauri: Kohn anomalies and nonadiabaticity in doped carbon nanotubes, Phys. Rev. B 75, 115423 (2007)

    Google Scholar 

  • J.-C. Charlier, X. Blase, S. Roche: Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79, 677–732 (2007)

    Google Scholar 

  • J. C. Slonczewski, P. R. Weiss: Band structure of graphite, Phys. Rev. 109, 272 (1958)

    Google Scholar 

  • K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim: Two-dimensional atomic crystals, Proc. Nature Acad. Sci. USA 102, 10451 (2005)

    Google Scholar 

  • C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. {De Heer}: Electronic confinement and coherence in patterned epitaxial graphene, Science 312, 1191 (2006)

    Google Scholar 

  • K. Nomura, A. H. MacDonald: Quantum transport of massless {D}irac fermions, Phys. Rev. Lett. 98, 076602 (2007)

    Google Scholar 

  • K. S. Novoselov, E. McCann, S. V. Morozov, V. I. F. M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A. K. Geim: Unconventional quantum {H}all effect and {B}erry's phase of 2 pi in bilayer graphene, Nature Phys. 2, 177 (2006)

    Google Scholar 

  • S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, L. A. Ponomarenko, D. Jiang, A. K. Geim: Strong suppression of weak localization in graphene, Phys. Rev. Lett. 97, 016801 (2006)

    Google Scholar 

  • V. M. Galitski, S. Adam, S. D. Sarma: Statistics of random voltage fluctuations and the low-density residual conductivity of graphene, arXiv Url: cond-mat/0702117

    Google Scholar 

  • F. D. M. Haldane: Model for a quantum {H}all effect without {L}andau levels: Condensed-matter realization of the ''parity anomaly``, Phys. Rev. Lett. 61, 2015 (1988)

    Google Scholar 

  • Y. S. Zheng, T. Ando: Hall conductivity of a two-dimensional graphite system, Phys. Rev. B 65, 245420 (2002)

    Google Scholar 

  • M. L. Sadowski, G. Martinez, M. Potemski, C. Berger, W. A. de Heer: Landau level spectroscopy of ultrathin graphite layers, Phys. Rev. Lett. 97, 266405 (2006)

    Google Scholar 

  • Z. Jiang, E. A. Henriksen, L. C. Tung, Y.-J. Wang, M. E. Schwartz, M. Y. Han, P. Kim, H. L. Stormer: Infrared spectroscopy of {L}andau levels of graphene, Phys. Rev. Lett. 98, 197403 (2007)

    Google Scholar 

  • R. S. Deacon, K.-C. Chuang, R. J. Nicholas, K. S. Novoselov, A. K. Geim: Cyclotron resonance study of the electron and hole velocity in graphene monolayers, Phys. Rev. B 76 (8), 081406 (2007)

    Google Scholar 

  • K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim: Room-temperature quantum {H}all effect in graphene, Science 315, 1379 (2007)

    Google Scholar 

  • M. Berry: Quantal phase-factors accompanying adiabatic changes, Proc. R. Soc. Lond. A 392, 45 (1984)

    Google Scholar 

  • D. Shoenberg: Magnetic Oscillations in Metals (Cambridge University Press, Cambridge 1984)

    Google Scholar 

  • Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y. W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, P. Kim: Landau-level splitting in graphene in high magnetic fields, Phys. Rev. Lett. 96, 136806 (2006)

    Google Scholar 

  • D. A. Abanin, K. S. Novoselov, U. Zeitler, P. A. Lee, A. K. Geim, L. S. Levitov: Dissipative quantum {H}all effect in graphene near the {D}irac point, Phys. Rev. Lett. 98, 196806 (2007)

    Google Scholar 

  • K. Yang: Spontaneous symmetry breaking and quantum {H}all effect in graphene, Solid State Comm. 143, 27 (2007)

    Google Scholar 

  • K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus: Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54, 17954 (1996)

    Google Scholar 

  • K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist: Electronic and magnetic properties of nanographite ribbons, Phys. Rev. B 59, 8271 (1999)

    Google Scholar 

  • Y. Miyamoto, K. Nakada, M. Fujita: First-principles study of edge states of {H}-terminated graphitic ribbons, Phys. Rev. B 59, 9858 (1999)

    Google Scholar 

  • T. Kawai, Y. Miyamoto, O. Sugino, Y. Koga: Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities, Phys. Rev. B 62, R16349 (2000)

    Google Scholar 

  • S. Okada, A. Oshiyama: Magnetic ordering in hexagonally bonded sheets with first-row elements, Phys. Rev. Lett. 87, 146803 (2001)

    Google Scholar 

  • H. Lee, Y.-W. Sun, N. Park, S. Han, J. Yu: Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states, Phys. Rev. B 72, 174431 (2005)

    Google Scholar 

  • M. Ezawa: Peculiar width dependence of the electronic properties of carbon nanoribbons, Phys. Rev. B 73, 045432 (2006)

    Google Scholar 

  • L. Brey, H. A. Fertig: Electronic states of graphene nanoribbons studied with the {D}irac equation, Phys. Rev. B 73, 235411 (2006)

    Google Scholar 

  • K.-I. Sasaki, S. Murakami, R. Saito: J. Phys. Soc. Jpn. 75, 074713 (2006)

    Google Scholar 

  • D. A. Abanin, P. A. Lee, L. S. Levitov: Spin-filtered edge states and quantum {H}all effect in graphene, Phys. Rev. Lett. 96, 176803 (2006)

    Google Scholar 

  • Y.-W. Son, M. L. Cohen, S. G. Louie: Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97, 216803 (2006)

    Google Scholar 

  • Y.-W. Son, M. L. Cohen, S. G. Louie: Erratum: {E}nergy gaps in graphene nanoribbons, Phys. Rev. Lett. 98, 089901 (2007)

    Google Scholar 

  • Y.-W. Son, M. L. Cohen, S. G. Louie: Half-metallic graphene nanoribbons, Nature 444, 347 (2006)

    Google Scholar 

  • Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi: Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev. B 71, 193406 (2005)

    Google Scholar 

  • C. L. Kane, E. J. Mele: Z(2) topological order and the quantum spin {H}all effect, Phys. Rev. Lett. 95, 146802 (2005)

    Google Scholar 

  • D. Prezzi, D. Varasano, A. Ruini, E. Molinari: Optical properties of graphene nanoribbons: {T}he role of many-body effects, arXiv:0706.0916 (2007)

    Google Scholar 

  • M. Y. Han, B. Özyilmaz, Y. Zhang, P. Kim: Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98, 206805 (2007)

    Google Scholar 

  • Z. Chen, Y.-M. Lin, M. J. Rooks, P. Avouris: Graphene nano\hyp{}ribbon electronics, URL: cond-mat/0701599 arXiv

    Google Scholar 

  • F. {Cervantes-Sodi}, G. Csanyi, S. Piscanec, A. C. Ferrari: Edge functionalised and substitutional doped graphene nanoribbons: electronic and spin properties, Cond Mat 0711.2340 (2007)

    Google Scholar 

  • G. Dresselhaus, M. S. Dresselhaus: Spin-orbit interaction in graphite, Phys. Rev. 140, 401 (1965)

    Google Scholar 

  • J.-C. Charlier, X. Gonze, J.-P. Michenaud: First-principles study of the electronic properties of graphite, Phys. Rev. B 43, 4579 (1991)

    Google Scholar 

  • J.-C. Charlier, X. Gonze, J.-P. Michenaud: First-principles study of the electronic properties of simple hexagonal graphite, Phys. Rev. B 46, 4531 (1992)

    Google Scholar 

  • J.-C. Charlier, X. Gonze, J.-P. Michenaud: First-principles study of the stacking effect on the electronic properties of graphite(s), Carbon 32, 289–299 (1994)

    Google Scholar 

  • J.-C. Charlier, X. Gonze, J.-P. Michenaud: Graphite interplanar bonding: electronic delocalization and van der {W}aals interaction, Europhys. Lett. 28, 403–408 (1994)

    Google Scholar 

  • S. Latil, L. Henrard: Charge carriers in few-layer graphene films, Phys. Rev. Lett. 97, 036803 (2006)

    Google Scholar 

  • F. Guinea, A. H. Castro-Neto, N. M. R. Peres: Electronic states and {L}andau levels in graphene stacks, Phys. Rev. B 73, 245426 (2006)

    Google Scholar 

  • J.-C. Charlier, J.-P. Michenaud, P. Lambin: Tight-binding density of electronic states of pregraphitic carbon, Phys. Rev. B 46, 4540 (1992)

    Google Scholar 

  • E. McCann, V. I. Fal'ko: Landau-level degeneracy and quantum {H}all effect in a graphite bilayer, Phys. Rev. Lett. 96, 086805 (2006)

    Google Scholar 

  • E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. L. dos Santos, J. Nilsson, F. Guinea, A. K. Geim, A. H. Castro-Neto: Biased bilayer graphene: {S}emiconductor with a gap tunable by electric field effect, URL: cond-mat/0611342 arXiv

    Google Scholar 

  • C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, A. C. Ferrari: Rayleigh imaging of graphene and graphene layers, Nano Lett. 7, 2711 (2007)

    Google Scholar 

  • A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, A. K. Geim: Raman spectrum of graphene and graphene layers, Phys. Rev. 97, 187401 (2006)

    Google Scholar 

  • A. C. Ferrari, J. Robertson: Raman spectroscopy in carbons: From nanotubes to diamond, Philos. Trans. Roy. Soc. A 362, 2267–2565 (2004)

    Google Scholar 

  • C. Castiglioni, F. Negri, M. Rigolio, G. Zerbi: Raman activation in disordered graphites of the {A}1 ' symmetry forbidden k \neq 0 phonon: The origin of the {D} line, J. Chem. Phys. 115, 3769 (2001)

    Google Scholar 

  • C. Castiglioni, M. Tommasini, G. Zerbi: Raman spectroscopy of polyconjugated molecules and materials: {C}onfinement effect in one and two dimensions, Philos. Trans. R. Soc. Lond. A 362, 2425 (2004)

    Google Scholar 

  • F. Tuinstra, J. Koenig.: Raman spectrum of graphite, J. Chem. Phys. 53, 1126 (1970)

    Google Scholar 

  • A. C. Ferrari, J. Robertson: Interpretation of {R}aman spectra of disordered and amorphous carbon, Phys. Rev. B 61, 14095 (2000)

    Google Scholar 

  • R. J. Nemanich, S. A. Solin: First- and second-order {R}aman scattering from finite-size crystals of graphite, Phys. Rev. B 20, 392 (1979)

    Google Scholar 

  • R. Al-Jishi, G. Dresselhaus: Lattice-dynamical model for graphite, Phys. Rev. B, 26, 4514 (1982)

    Google Scholar 

  • R. P. Vidano, D. B. Fishbach, L. J. Willis, T. M. Loehr: Observation of {R}aman band shifting with excitation wavelength for carbons and graphites, Solid State Commun. 39, 341 (1981)

    Google Scholar 

  • I. Pocsik, M. Hundhausen, M. Koos, L. Ley: {DC} electrical properties of amorphous carbon with different bonding hybridization, J. Non-Cryst. Solids 227–230, 1087 (1998)

    Google Scholar 

  • P. Lespade, A. Marchard, M. Couzi, F. Cruege: Caracterisation de materiaux carbones par microspectrometrie {R}aman, Carbon 22, 375 (1984)

    Google Scholar 

  • C. Thomsen, S. Reich: Double resonant {R}aman scattering in graphite, Phys. Rev. Lett. 85, 5214 (2000)

    Google Scholar 

  • A. V. Baranov, A. N. Bekhterev, Y. S. Bobovich, V. I. Petrov: Interpretation of some peculiarities in {R}aman spectra of graphite and glassy carbon, Opt. Spektrosk. 62, 1036 (1987)

    Google Scholar 

  • J. Maultzsch, S. Reich, C. Thomsen, H. Requardt: Phonon dispersion in graphite, P. Ordej{\'o}n. Phys. Rev. Lett. 92, 075501 (2004)

    Google Scholar 

  • M. J. Matthews, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, M. Endo: Origin of dispersive effects of the {R}aman {D} band in carbon materials, Phys. Rev. B 59, 6585 (1999)

    Google Scholar 

  • A. Gruneis, R. Saito, T. Kimura, L. G. Can{ç}ado, M. A. Pimenta, A. Jorio, A. G. S. Filho, G. Dresselhaus, M. S. Dresselhaus: Determination of two-dimensional phonon dispersion relation of graphite by {R}aman spectroscopy, Phys. Rev. B 65, 155405 (2002)

    Google Scholar 

  • R. Saito, A. Jorio, A. G. S. Filho, G. Dresselhaus, M. S. Dresselhaus, M. A. Pimenta: Probing phonon dispersion relations of graphite by double resonance {R}aman scattering, Phys. Rev. Lett. 88, 027401 (2002)

    Google Scholar 

  • A. C. Ferrari, J. Robertson.: Resonant {R}aman spectroscopy of disordered, amorphous, and diamondlike carbon, Phys. Rev. B, 64, 075414 (2001)

    Google Scholar 

  • C. Mapelli, C. Castiglioni, G. Zerbi, K. Mullen: Common force field for graphite and polycyclic aromatic hydrocarbons, Phys. Rev. B 60, 12710 (1999)

    Google Scholar 

  • G. Kresse, J. Furthmuller, J. Hafner: Ab initio force constant approach to phonon dispersion relations of diamond and graphite, Europhys. Lett. 32, 729 (1995)

    Google Scholar 

  • P. Pavone, R. Bauer, K. Karch, O. Sch{ü}tt, S. Vent, W. Windl, D. Strauch, S. Baroni, S. de Gironcoli: Ab initio phonon calculations in solids, Physica B, 219–220, 439 (1996)

    Google Scholar 

  • L. Wirtz, A. Rubio: The phonon dispersion of graphite revisited, Solid. State Commun. 131, 141 (2004)

    Google Scholar 

  • O. Dubay, G. Kresse: Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes, Phys. Rev. B 67, 035401 (2003)

    Google Scholar 

  • W. Kohn: Image of the {F}ermi surface in the vibration spectrum of a metal, Phys. Rev. Lett. 2, 393 (1959)

    Google Scholar 

  • A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai: High-field quasiballistic transport in short carbon nanotubes, Phys. Rev. Lett. 92, 106804 (2004)

    Google Scholar 

  • J. Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Ustunel, S. Braig, T. A. Arias, P. W. Brouwer, P. L. McEuen: Electron–phonon scattering in metallic single-walled carbon nanotubes, Nano Lett. 4, 517 (2004)

    Google Scholar 

  • V. Perebeinos, J. Tersoff, P. Avouris: Electron–phonon interaction and transport in semiconducting carbon nanotubes, Phys. Rev. Lett. 94, 086802 (2005)

    Google Scholar 

  • Z. Yao, C. L. Kane, C. Dekker: High-field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett. 84, 2941 (2000)

    Google Scholar 

  • J. Jiang, R. Saito, A. Gruneis, G. Dresselhaus, M. S. Dresselhaus: Electron–phonon interaction and relaxation time in graphite, Chem. Phys. Lett. 392, 383 (2004)

    Google Scholar 

  • J. Jiang, R. Saito, A. Gr{ü}neis, S. G. Chou, G. G. Samsonidze, A. Jorio, G. Dresselhaus, M. S. Dresselhaus: Photoexcited electron relaxation processes in single-wall carbon nanotubes, Phys. Rev. B 71, 045417 (2005)

    Google Scholar 

  • G. Pennington, N. Goldsman: Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes, Phys. Rev. B 68, 045426 (2004)

    Google Scholar 

  • G. D. Mahan: Electron–optical phonon interaction in carbon nanotubes, Phys. Rev. B 68, 125409 (2003)

    Google Scholar 

  • P. H. Tan, C. Y. Hu, J. Dong, W. C. Shen, B. F. Zhang: Polarization properties, high-order {R}aman spectra, and frequency asymmetry between {S}tokes and anti-{S}tokes scattering of {R}aman modes in a graphite whisker, Phys. Rev B 64, 214301 (2000)

    Google Scholar 

  • V. Scardaci, P. H. Tan, A. C. Ferrari, et al.: unpublished

    Google Scholar 

  • M. Lazzeri, F. Mauri: Nonadiabatic {K}ohn anomaly in a doped graphene monolayer, Phys. Rev. Lett. 97, 266407 (2006)

    Google Scholar 

  • A. Gupta, P. C. Eklund: unpublished

    Google Scholar 

  • Y. Wang, D. C. Aolsmeyer, R. L. McCreery: Raman spectroscopy of carbon materials: {S}tructural basis of observed spectra, Chem. Mater. 2, 557 (1990)

    Google Scholar 

  • A. Gupta, P. C. Eklund: unpublished

    Google Scholar 

  • P. H. Tan, C. Casiraghi, A. C. Ferrari: unpublished

    Google Scholar 

  • J. Yan, Y. Zhang, P. Kim, A. Pinczuk: Electric field effect tuning of electron–phonon coupling in graphene, Phys. Rev. Lett. 98, 166802 (2007)

    Google Scholar 

  • T. Ando: Anomaly of optical phonon in monolayer graphene, J. Phys. Soc. Jpn. 75, 124701 (2006)

    Google Scholar 

  • A. H. Castro-Neto, F. Guinea.: Electron–phonon coupling and {R}aman spectroscopy in graphene, Phys. Rev. B 75, 045404 (2007)

    Google Scholar 

  • G. Moos, C. Gahl, R. Fasel, M. Wolf, T. Hertel: Anisotropy of quasiparticle lifetimes and the role of disorder in graphite from ultrafast time-resolved photoemission spectroscopy, Phys. Rev. Lett. 87, 267402 (2001)

    Google Scholar 

  • T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, M. Wolf: Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite, Phys. Rev. Lett. 95, 187403 (2005)

    Google Scholar 

  • A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P. C. Eklund: Raman scattering from high-frequency phonons in supported n-graphene layer films, Nano Lett. 6, 2667 (2006)

    Google Scholar 

  • D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz: Spatially resolved {R}aman spectroscopy of single- and few-layer graphene, Nano Lett. 7, 238 (2007)

    Google Scholar 

  • C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, A. C. Ferrari: Raman fingerprint of charged impurities in graphene, Cond-Mat 0709.2566 (2007)

    Google Scholar 

  • C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, A. C. Ferrari: Raman fingerprint of charged impurities in graphene, Appl. Phys. Lett. in press.

    Google Scholar 

  • A. Das, S. Pisana, S. Piscanec, B. Chakraborty, S. K. Saha, U. V. Waghmare, R. Yiang, H. R. Krishnamurhthy, A. K. Geim, A. C. Ferrari, A. K. Sood: Electrochemically gated graphene: Monitoring dopants by {R}aman scattering, cond mat 0709.1174 (2007)

    Google Scholar 

  • V. Zolyomi, J. Kurti: First-principles calculations for the electronic band structures of small diameter single-wall carbon nanotubes, Phys. Rev. B, 70, 085403 (2004)

    Google Scholar 

  • D. Conn\'etable, D., G.-M. Rignanese, J.-C. Charlier, X. Blase: Room temperature {P}eierls distortion in small diameter nanotubes, Phys. Rev. Lett. 94, 015503 (2005)

    Google Scholar 

  • A. Jorio, R. Saito, M. S. Dresselhaus, G. Dressselhaus: One contribution of 13 to a theme '{R}aman spectroscopy in carbons: from nanotubes to diamond', Trans. Roy. Soc. A 362, 2311 (2004)

    Google Scholar 

  • S. D. M. Brown, A. Jorio, P. Corio, M. S. Dresselhaus, G. Dresselhaus, R. Saito, K. Kneipp: Origin of the {B}reit–{W}igner–{F}ano lineshape of the tangential g-band feature of metallic carbon nanotubes, Phys. Rev. B 63, 155414 (2001)

    Google Scholar 

  • K. Kempa: Gapless plasmons in carbon nanotubes and their interactions with phonons, Phys. Rev. B 66, 195406 (2002)

    Google Scholar 

  • U. Fano: Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124, 1866 (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Charlier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Charlier, JC., Eklund, P.C., Zhu, J., Ferrari, A.C. (2007). Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72865-8_21

Download citation

Publish with us

Policies and ethics