Skip to main content

Approximating Betweenness Centrality

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4863))

Abstract

Betweenness is a centrality measure based on shortest paths, widely used in complex network analysis. It is computationally-expensive to exactly determine betweenness; currently the fastest-known algorithm by Brandes requires O(nm) time for unweighted graphs and O(nm + n 2logn) time for weighted graphs, where n is the number of vertices and m is the number of edges in the network. These are also the worst-case time bounds for computing the betweenness score of a single vertex. In this paper, we present a novel approximation algorithm for computing betweenness centrality of a given vertex, for both weighted and unweighted graphs. Our approximation algorithm is based on an adaptive sampling technique that significantly reduces the number of single-source shortest path computations for vertices with high centrality. We conduct an extensive experimental study on real-world graph instances, and observe that our random sampling algorithm gives very good betweenness approximations for biological networks, road networks and web crawls.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  2. Shimbel, A.: Structural parameters of communication networks. Bulletin of Mathematical Biophysics 15, 501–507 (1953)

    Article  MathSciNet  Google Scholar 

  3. Freeman, L.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  4. Anthonisse, J.: The rush in a directed graph. In: Report BN9/71, Stichting Mathematisch Centrum, Amsterdam, Netherlands (1971)

    Google Scholar 

  5. Jeong, H., Mason, S., Barabási, A.L., Oltvai, Z.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)

    Article  Google Scholar 

  6. Pinney, J., McConkey, G., Westhead, D.: Decomposition of biological networks using betweenness centrality. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, Springer, Heidelberg (2005)

    Google Scholar 

  7. del Sol, A., Fujihashi, H., O’Meara, P.: Topology of small-world networks of protein-protein complex structures. Bioinformatics 21(8), 1311–1315 (2005)

    Article  Google Scholar 

  8. Liljeros, F., Edling, C., Amaral, L., Stanley, H., Åberg, Y.: The web of human sexual contacts. Nature 411, 907–908 (2001)

    Article  Google Scholar 

  9. Krebs, V.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2002)

    Google Scholar 

  10. Coffman, T., Greenblatt, S., Marcus, S.: Graph-based technologies for intelligence analysis. Communications of the ACM 47(3), 45–47 (2004)

    Article  Google Scholar 

  11. Buckley, N., van Alstyne, M.: Does email make white collar workers more productive? Technical report, University of Michigan (2004)

    Google Scholar 

  12. Cisic, D., Kesic, B., Jakomin, L.: Research of the power in the supply chain. In: International Trade, Economics Working Paper Archive EconWPA (April 2000)

    Google Scholar 

  13. Newman, M.: The structure and function of complex networks. SIAM Review 45(2), 167–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Girvan, M., Newman, M.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences, USA 99(12), 7821–7826 (2002)

    Google Scholar 

  15. Brandes, U.: A faster algorithm for betweenness centrality. J. Mathematical Sociology 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  16. Bader, D., Madduri, K.: Parallel algorithms for evaluating centrality indices in real-world networks. In: ICPP. Proc. 35th Int’l Conf. on Parallel Processing, Columbus, OH, IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  17. Eppstein, D., Wang, J.: Fast approximation of centrality. In: SODA 2001. Proc. 12th Ann. Symp. Discrete Algorithms, Washington, DC, pp. 228–229 (2001)

    Google Scholar 

  18. Brandes, U., Pich, C.: Centrality estimation in large networks. In: To appear in Intl. Journal of Bifurcation and Chaos, Special Issue on Complex Networks’ Structure and Dynamics (2007)

    Google Scholar 

  19. Lipton, R., Naughton, J.: Estimating the size of generalized transitive closures. In: VLDB, pp. 165–171 (1989)

    Google Scholar 

  20. Madduri, K., Bader, D.: Small-world Network Analysis in Parallel: a toolkit for centrality analysis (2007), http://www.cc.gatech.edu/~kamesh

  21. Madduri, K., Bader, D.: GTgraph: A suite of synthetic graph generators (2006), http://www.cc.gatech.edu/~kamesh/GTgraph

  22. Barabási, A.L.: Network databases (2007), http://www.nd.edu/~networks/resources.htm

  23. Bader, D., Madduri, K.: A graph-theoretic analysis of the human protein interaction network using multicore parallel algorithms. In: HiCOMB 2007. Proc. 6th Workshop on High Performance Computational Biology, Long Beach, CA (March 2007)

    Google Scholar 

  24. Davis, T.: University of Florida Sparse Matrix Collection (2007), http://www.cise.ufl.edu/research/sparse/matrices

  25. Batagelj, V., Mrvar, A.: PAJEK datasets (2006), http://www.vlado.fmf.uni-lj.si/pub/networks/data/

  26. Demetrescu, C., Goldberg, A., Johnson, D.: 9th DIMACS implementation challenge – Shortest Paths (2006), http://www.dis.uniroma1.it/~challenge9/

  27. Erdős, P., Rényi, A.: On random graphs I. Publicationes Mathematicae 6, 290–297 (1959)

    Google Scholar 

  28. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  29. Peri, S., et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Research 13, 2363–2371 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Anthony Bonato Fan R. K. Chung

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bader, D.A., Kintali, S., Madduri, K., Mihail, M. (2007). Approximating Betweenness Centrality. In: Bonato, A., Chung, F.R.K. (eds) Algorithms and Models for the Web-Graph. WAW 2007. Lecture Notes in Computer Science, vol 4863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77004-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77004-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77003-9

  • Online ISBN: 978-3-540-77004-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics