Skip to main content

Fungal Genome Mining and Activation of Silent Gene Clusters

  • Chapter
  • First Online:
Book cover Physiology and Genetics

Part of the book series: The Mycota ((MYCOTA,volume 15))

Abstract

Fungi produce numerous secondary metabolites that show antibiotic activity against various microorganisms, antiviral, antitumor and/or fungicidal activity. One of the major challenges, however, is to understand the physiological meaning of the many secondary metabolites for the producing microorganism. As long as this is not understood it is often not possible to produce the compounds under laboratory conditions and to predict the regulatory circuits involved in the regulation of their biosyntheses. This fact is supported by the finding that genome mining of available fungal genomes indicated that their potential to produce compounds is greatly underestimated. Fungal genomes bear the genetic information for the biosynthesis of many more compounds which still await discovery. Despite this limitation, to get access to the vast number of unknown compounds encoded by silent gene clusters, mixing genomic data, genetic engineering and analytical techniques provides a new avenue to discover novel and potentially bioactive natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennett JW, Bentley R (1989) What's in a name? – microbial secondary metabolism. Adv Appl Microbiol 34:1–28

    Article  CAS  Google Scholar 

  • Bergmann S, Schumann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar D, Yu C, Ehrlich KC (2002) Toxins of filamentous fungi. Chem Immunol 81:167–206

    Article  CAS  PubMed  Google Scholar 

  • Bode HB, Muller R (2005) The impact of bacterial genomics on natural product research. Angew Chem Int Ed Engl 44:6828–6846

    Article  CAS  PubMed  Google Scholar 

  • Bode HB, Bethe B, Hofs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature's chemical diversity. Chembiochem 3:619–627

    Article  CAS  PubMed  Google Scholar 

  • Bok JW, Hoffmeister D, Maggio-Hall LA, Murillo R, Glasner JD, Keller NP (2006) Genomic mining for Aspergillus natural products. Chem Biol 13:31–37

    Article  CAS  PubMed  Google Scholar 

  • Brakhage AA, Schuemann J, Bergmann S, Scherlach K, Schroeckh V, Hertweck C (2008) Activation of fungal silent gene clusters: a new avenue to drug discovery. Prog Drug Res 66:3–12

    Google Scholar 

  • Brendel N, Partida-Martinez LP, Scherlach K, Hertweck C (2007) A cryptic PKS-NRPS gene locus in the plant commensal Pseudomonas fluorescens Pf-5 codes for the biosynthesis of an antimitotic rhizoxin complex. Org Biomol Chem 5:2211–2213

    Article  CAS  PubMed  Google Scholar 

  • Cane DE (1997) Introduction: Polyketide and nonribosomal polypeptide biosynthesis. From collie to coli. Chem Rev 97:2463–2464

    Article  CAS  PubMed  Google Scholar 

  • Cane DE, Walsh CT (1999) The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem Biol 6:R319–R325

    Article  CAS  PubMed  Google Scholar 

  • Challis GL (2007) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chembiochem 8:1477

    Article  CAS  Google Scholar 

  • Chiang YM, Szewczyk E, Nayak T, Davidson AD, Sanchez JF, Lo HC, Ho WY, Simityan H, Kuo E, Praseuth A, Watanabe K, Oakley BR, Wang CC (2008) Molecular genetic mining of the Aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. Chem Biol 15:527–532

    Article  CAS  PubMed  Google Scholar 

  • Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432:829–837

    Article  CAS  PubMed  Google Scholar 

  • Eley KL, Halo LM, Song Z, Powles H, Cox RJ, Bailey AM, Lazarus CM, Simpson TJ (2007) Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Chembiochem 8:289–297

    Article  CAS  PubMed  Google Scholar 

  • Gross H, Stockwell VO, Henkels MD, Nowak-Thompson B, Loper JE, Gerwick WH (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem Biol 14:53–63

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Kennedy J, Turner G (1996) delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet 253:189–197

    Article  CAS  PubMed  Google Scholar 

  • Khosla C (1997) Harnessing the biosynthetic potential of modular polyketide synthases. Chem Rev 97:2577–2590

    Article  CAS  PubMed  Google Scholar 

  • Lautru S, Deeth RJ, Bailey LM, Challis GL (2005) Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat Chem Biol 1:265–269

    Article  CAS  PubMed  Google Scholar 

  • Lazzarini A, Cavaletti L, Toppo G, Marinelli F (2000) Rare genera of actinomycetes as potential producers of new antibiotics. Antonie Van Leeuwenhoek 78:399–405

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Christenson SD, Standage S, Shen B (2002) Biosynthesis of the enediyne antitumor antibiotic C-1027. Science 297:1170–1173

    Article  CAS  PubMed  Google Scholar 

  • McAlpine JB, Bachmann BO, Piraee M, Tremblay S, Alarco AM, Zazopoulos E, Farnet CM (2005) Microbial genomics as a guide to drug discovery and structural elucidation: ECO-02301, a novel antifungal agent, as an example. J Nat Prod 68:493–496

    Article  CAS  PubMed  Google Scholar 

  • Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T, Ishida K, Jenke-Kodama H, Dittmann E, Gurgui C, Hochmuth T, Taudien S, Platzer M, Hertweck C, Piel J (2008) Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat Biotechnol 26:225–233

    Article  CAS  PubMed  Google Scholar 

  • Paitan Y, Alon G, Orr E, Ron EZ, Rosenberg E (1999) The first gene in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus codes for a unique PKS module coupled to a peptide synthetase. J Mol Biol 286:465–474

    Article  CAS  PubMed  Google Scholar 

  • Peric-Concha N, Long PF (2003) Mining the microbial metabolome: a new frontier for natural product lead discovery. Drug Discov Today 8:1078–1084

    Article  CAS  PubMed  Google Scholar 

  • Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, Nierman WC, Keller NP (2007) Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 3:e50

    Article  PubMed  Google Scholar 

  • Scherlach K, Hertweck C (2006) Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining. Org Biomol Chem 4:3517–3520

    Article  CAS  PubMed  Google Scholar 

  • Schmidt K, Riese U, Li Z, Hamburger M (2003) Novel tetramic acids and pyridone alkaloids, militarinones B, C and D, from the insect pathogenic fungus Paecilomyces militaris. J Nat Prod 66:378–383

    Article  CAS  PubMed  Google Scholar 

  • Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664

    Article  CAS  PubMed  Google Scholar 

  • Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738

    Article  CAS  PubMed  Google Scholar 

  • Silakowski B, Schairer HU, Ehret H, Kunze B, Weinig S, Nordsiek G, Brandt P, Blocker H, Hofle G, Beyer S, Muller R (1999) New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1. J Biol Chem 274:37391–37399

    Article  CAS  PubMed  Google Scholar 

  • Sims JW, Fillmore JP, Warner DD, Schmidt EW (2005) Equisetin biosynthesis in Fusarium heterosporum. Chem Commun (Camb) 2:186–188

    Article  Google Scholar 

  • Song Z, Cox RJ, Lazarus CM, Simpson TT (2004) Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. Chembiochem 5:1196–1203

    Article  CAS  PubMed  Google Scholar 

  • van den Broek P, Pittet A, Hajjaj H (2001) Aflatoxin genes and the aflatoxigenic potential of Koji moulds. Appl Microbiol Biotechnol 57:192–199

    Article  PubMed  Google Scholar 

  • Walsh CT, Chen H, Keating TA, Hubbard BK, Losey HC, Luo L, Marshall CG, Miller DA, Patel HM (2001) Tailoring enzymes that modify nonribosomal peptides during and after chain elongation on NRPS assembly lines. Curr Opin Chem Biol 5:525–534

    Article  CAS  PubMed  Google Scholar 

  • Waring RB, May GS, Morris NR (1989) Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene 79:119–130

    Article  CAS  PubMed  Google Scholar 

  • Wenzel S, Kunze CB, Hofle G, Silakowski B, Scharfe M, Blocker H, Muller R (2005) Structure and biosynthesis of myxochromides S1-3 in Stigmatella aurantiaca: evidence for an iterative bacterial type I polyketide synthase and for module skipping in nonribosomal peptide biosynthesis. Chembiochem 6:375–385

    Article  CAS  PubMed  Google Scholar 

  • Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Straight PD, Hrvatin S, Dorrestein PC, Bumpus SB, Jao C, Kelleher NL, Kolter R, Walsh CT (2007) Genome-wide high-throughput mining of natural-product biosynthetic gene clusters by phage display. Chem Biol 14:303–312

    Article  CAS  PubMed  Google Scholar 

  • Zazopoulos E, Huang K, Staffa A, Liu W, Bachmann BO, Nonaka K, Ahlert J, Thorson S, Shen B, Farnet CM (2003) A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 21:187–190

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-Q, Wilkinson H, Keller NP, Tsitsigiannis DI (2004) Secondary metabolite gene clusters. In: An, Z (ed) Handbook of industrial microbiology. Dekker, New York, pp 355–386

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel A. Brakhage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brakhage, A.A., Bergmann, S., Schuemann, J., Scherlach, K., Schroeckh, V., Hertweck, C. (2009). Fungal Genome Mining and Activation of Silent Gene Clusters. In: Anke, T., Weber, D. (eds) Physiology and Genetics. The Mycota, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00286-1_14

Download citation

Publish with us

Policies and ethics