Skip to main content

Brain–Computer Interfaces: A Gentle Introduction

  • Chapter
  • First Online:

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Stardate 3012.4: The U.S.S. Enterprise has been diverted from its original course to meet its former captain Christopher Pike on Starbase 11. When Captain Jim Kirk and his crew arrive, they find out that Captain Pike has been severely crippled by a radiation accident. As a consequence of this accident Captain Pike is completely paralyzed and confined to a wheelchair controlled by his brain waves. He can only communicate through a light integrated into his wheelchair to signal the answers “yes” or “no”. Commodore Mendez, the commander of Starbase 11, describes the condition of Captain Pike as follows: “He is totally unable to move, Jim. His wheelchair is constructed to respond to his brain waves. He can turn it, move it forwards, backwards slightly. Through a flashing light he can say ‘yes’ or ‘no’. But that’s it, Jim. That is as much as the poor ever can do. His mind is as active as yours and mine, but it’s trapped in a useless vegetating body. He’s kept alive mechanically. A battery driven heart. …”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D.C. Dennett, Consciousness explained, Back Bay Books, Lippincott Williams & Wilkins, (1992).

    Google Scholar 

  2. J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, and T.M. Vaughan, Brain-computer interfaces for communication and control. Clin Neurophysiol, 113, Jun., 767–791, (2002).

    Article  PubMed  Google Scholar 

  3. J.P. Donoghue, Connecting cortex to machines: recent advances in brain interfaces. Nat Neurosci. 5 (Suppl), Nov., 1085–1088, (2002).

    Article  CAS  PubMed  Google Scholar 

  4. S.P. Levine, J.E. Huggins, S.L. BeMent, R.K. Kushwaha, L.A. Schuh, E.A. Passaro, M.M. Rohde, and D.A. Ross, Identification of electrocorticogram patterns as the basis for a direct brain interface, J Clin Neurophysiol. 16, Sep., 439–447, (1999).

    Article  CAS  PubMed  Google Scholar 

  5. A.B. Schwartz, Cortical neural prosthetics. Annu Rev Neurosci, 27, 487–507, (2004).

    Article  CAS  PubMed  Google Scholar 

  6. E. Niedermeyer and F.L.D. Silva, Electroencephalography: Basic principles, clinical applications, and related fields, Lippincott Williams & Wilkins, (2004).

    Google Scholar 

  7. J.R. Wolpaw, G.E. Loeb, B.Z. Allison, E. Donchin, O.F. do Nascimento, W.J. Heetderks, F. Nijboer, W.G. Shain, and J.N. Turner, BCI Meeting 2005 – workshop on signals and recording methods, IEEE Trans Neural Syst Rehabil Eng: A Pub IEEE Eng Med Biol Soc. 14, Jun., 138–141, (2006).

    Article  Google Scholar 

  8. G. Bauernfeind, R. Leeb, S.C. Wriessnegger, and G. Pfurtscheller, Development, set-up and first results for a one-channel near-infrared spectroscopy system. Biomedizinische Technik. Biomed Eng. 53, 36–43, (2008).

    Article  CAS  Google Scholar 

  9. G. Dornhege, J.D.R. Millan, T. Hinterberger, D.J. McFarland, K. Müller, and T.J. Sejnowski, Toward Brain-Computer Interfacing, The MIT Press, Cambridge, MA, (2007).

    Google Scholar 

  10. B.Z. Allison, D.J. McFarland, G. Schalk, S.D. Zheng, M.M. Jackson, and J.R. Wolpaw, Towards an independent brain-computer interface using steady state visual evoked potentials. Clin Neurophysiol, 119, Feb., 399–408, (2008).

    Article  PubMed  Google Scholar 

  11. C. Guger, S. Daban, E. Sellers, C. Holzner, G. Krausz, R. Carabalona, F. Gramatica, and G. Edlinger, How many people are able to control a P300-based brain-computer interface (BCI)? Neurosci Lett, 462, Oct., 94–98, (2009).

    Article  CAS  PubMed  Google Scholar 

  12. G. Pfurtscheller, G. Müller-Putz, B. Graimann, R. Scherer, R. Leeb, C. Brunner, C. Keinrath, G. Townsend, M. Naeem, F. Lee, D. Zimmermann, and E. Höfler, Graz-Brain-Computer Interface: State of Research. In R. Dornhege (Eds.), Toward brain-computer interfacing, MIT Press, Cambridge, MA, pp. 65–102, (2007).

    Google Scholar 

  13. D.S. Klobassa, T.M. Vaughan, P. Brunner, N.E. Schwartz, J.R. Wolpaw, C. Neuper, and E.W. Sellers, Toward a high-throughput auditory P300-based brain-computer interface. Clin Neurophysiol, 120, Jul., 1252–1261, (2009).

    Article  CAS  PubMed  Google Scholar 

  14. G.R. Müller-Putz, R. Scherer, C. Neuper, and G. Pfurtscheller, Steady-state somatosensory evoked potentials: suitable brain signals for brain-computer interfaces? IEEE Trans Neural Syst Rehabil Eng, 14, Mar., 30–37, (2006).

    Article  PubMed  Google Scholar 

  15. L. Citi, R. Poli, C. Cinel, and F. Sepulveda, P300-based BCI mouse with genetically-optimized analogue control. IEEE Trans Neural Syst Rehabil Eng, 16, Feb., 51–61, (2008).

    Article  PubMed  Google Scholar 

  16. C.J. Bell, P. Shenoy, R. Chalodhorn, and R.P.N. Rao, Control of a humanoid robot by a noninvasive brain-computer interface in humans. J Neural Eng, 5, Jun., 214–220, (2008).

    Article  PubMed  Google Scholar 

  17. B. Allison, T. Luth, D. Valbuena, A. Teymourian, I. Volosyak, and A. Graeser, BCI Demographics: How Many (and What Kinds of) People Can Use an SSVEP BCI? IEEE Trans Neural Syst Rehabil Eng: A Pub IEEE Eng Med Biol Soc, 18(2), Jan., 107–116, (2010).

    Google Scholar 

  18. S.P. Kelly, E.C. Lalor, R.B. Reilly, and J.J. Foxe, Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication. IEEE Trans Neural Syst Rehabil Eng, 13, Jun., 172–178, (2005).

    Article  PubMed  Google Scholar 

  19. A. Schlögl, F. Lee, H. Bischof, and G. Pfurtscheller, Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neural Eng, 2, L14–L22, (2005).

    Article  PubMed  Google Scholar 

  20. G.E. Fabiani, D.J. McFarland, J.R. Wolpaw, and G. Pfurtscheller, Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Trans Neural Syst Rehabil Eng, 12, Sep., 331–338, (2004).

    Article  PubMed  Google Scholar 

  21. D.J. McFarland, D.J. Krusienski, W.A. Sarnacki, and J.R. Wolpaw, Emulation of computer mouse control with a noninvasive brain-computer interface. J Neural Eng, 5, Jun., 101–110, (2008).

    Article  PubMed  Google Scholar 

  22. C. Neuper, R. Scherer, M. Reiner, and G. Pfurtscheller, Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn Brain Res, 25, Dec., 668–677, (2005).

    Article  PubMed  Google Scholar 

  23. S.G. Mason and G.E. Birch, A brain-controlled switch for asynchronous control applications. IEEE Trans Bio-Med Eng, 47, Oct., 1297–1307, (2000).

    Article  CAS  Google Scholar 

  24. A. Schlögl, J. Kronegg, J. Huggins, and S. Mason, Evaluation criteria for BCI research, In: Toward brain-computer interfacing, MIT Press, Cambridge, MA, pp. 342, 327, (2007).

    Google Scholar 

  25. D.J. McFarland, W.A. Sarnacki, and J.R. Wolpaw, Brain-computer interface (BCI) operation: optimizing information transfer rates. Biol Psychol, 63, Jul., 237–251, (2003).

    Article  PubMed  Google Scholar 

  26. B. Blankertz, G. Dornhege, M. Krauledat, K. Müller, and G. Curio, The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. NeuroImage, 37, Aug., 539–550, (2007).

    Article  PubMed  Google Scholar 

  27. O. Friman, I. Volosyak, and A. Gräser, Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Trans Bio-Med Eng, 54, Apr., 742–750, (2007).

    Article  Google Scholar 

  28. X. Gao, D. Xu, M. Cheng, and S. Gao, A BCI-based environmental controller for the motion-disabled. IEEE Trans Neural Syst Rehabil Eng, 11, Jun., 137–140, (2003).

    Article  PubMed  Google Scholar 

  29. G. Bin, X. Gao, Z. Yan, B. Hong, and S. Gao, An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. J Neural Eng, 6, Aug., 046002, (2009).

    Article  PubMed  Google Scholar 

  30. A. Kübler and N. Birbaumer, Brain-computer interfaces and communication in paralysis: extinction of goal directed thinking in completely paralysed patients? Clin Neurophysiol, 119, Nov., 2658–2666, (2008).

    Article  PubMed  Google Scholar 

  31. C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and G. Pfurtscheller, How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans Neural Syst and Rehabil Eng, 11, Jun., 145–147, (2003).

    Article  CAS  Google Scholar 

  32. S.G. Mason, A. Bashashati, M. Fatourechi, K.F. Navarro, and G.E. Birch, A comprehensive survey of brain interface technology designs. Ann Biomed Eng, 35, Feb., 137–169, (2007).

    Article  CAS  PubMed  Google Scholar 

  33. G. Pfurtscheller, G.R. Müller-Putz, A. Schlögl, B. Graimann, R. Scherer, R. Leeb, C. Brunner, C. Keinrath, F. Lee, G. Townsend, C. Vidaurre, and C. Neuper, 15 years of BCI research at Graz University of Technology: current projects. IEEE Trans Neural Syst Rehabil Eng, 14, Jun., 205–210, (2006).

    Article  CAS  PubMed  Google Scholar 

  34. E.W. Sellers and E. Donchin, A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol: Off J Int Feder Clin Neurophysiol, 117, Mar., 538–548, (2006).

    Google Scholar 

  35. B. Graimann, B. Allison, C. Mandel, T. Lüth, D. Valbuena, and A. Gräser, Non-invasive brain-computer interfaces for semi-autonomous assistive devices. Robust Intell Syst, 113–138, (2009).

    Google Scholar 

  36. R. Leeb, D. Friedman, G.R. Müller-Putz, R. Scherer, M. Slater, and G. Pfurtscheller, Self-Paced (Asynchronous) BCI control of a wheelchair in virtual environments: A case study with a Tetraplegic. Comput Intell Neurosci, 79642, (2007).

    Google Scholar 

  37. G. Pfurtscheller, C. Neuper, G.R. Müller, B. Obermaier, G. Krausz, A. Schlögl, R. Scherer, B. Graimann, C. Keinrath, D. Skliris, M. Wörtz, G. Supp, and C. Schrank, Graz-BCI: state of the art and clinical applications. IEEE Trans Neural Syst Rehabil Eng, 11, Jun., 177–180, (2003).

    Article  CAS  PubMed  Google Scholar 

  38. J.D.R. Millán, F. Renkens, J. Mouriño, and W. Gerstner, Noninvasive brain-actuated control of a mobile robot by human EEG, IEEE Trans Biomed Eng, 51, Jun., 1026–1033, (2004).

    Article  Google Scholar 

  39. M. Velliste, S. Perel, M.C. Spalding, A.S. Whitford, and A.B. Schwartz, Cortical control of a prosthetic arm for self-feeding. Nature, 453, 1098–1101, (2008).

    Article  CAS  PubMed  Google Scholar 

  40. G.R. Müller-Putz and G. Pfurtscheller, Control of an Electrical Prosthesis With an SSVEP-Based BCI, IEEE Trans Biomed Eng, 55, 361–364, (2008).

    Article  PubMed  Google Scholar 

  41. B.Z. Allison, E.W. Wolpaw, and J.R. Wolpaw, Brain-computer interface systems: progress and prospects. Expert Rev Med Devices, 4, Jul., 463–474, (2007).

    Article  PubMed  Google Scholar 

  42. J.R. Wolpaw, Brain-computer interfaces as new brain output pathways, J Physiol, 579, Mar., 613–619, (2007).

    Article  CAS  PubMed  Google Scholar 

  43. T. Vaughan, D. McFarland, G. Schalk, W. Sarnacki, D. Krusienski, E. Sellers, and J. Wolpaw, The wadsworth BCI research and development program: at home with BCI. IEEE Trans Neural Syst Rehabil Eng, 14, 229–233, (2006).

    Article  PubMed  Google Scholar 

  44. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, and J.P. Donoghue, Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature, 442, Jul., 164–171, (2006).

    Article  CAS  PubMed  Google Scholar 

  45. T.A. Kuiken, G.A. Dumanian, R.D. Lipschutz, L.A. Miller, and K.A. Stubblefield, The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int, 28, Dec., 245–253, (2004).

    CAS  PubMed  Google Scholar 

  46. R. Krepki, B. Blankertz, G. Curio, and K. Müller, The Berlin Brain-Computer Interface (BBCI) – towards a new communication channel for online control in gaming applications. Multimedia Tools Appl, 33, 73–90, (2007).

    Article  Google Scholar 

  47. R. Scherer, A. Schloegl, F. Lee, H. Bischof, J. Jansa, and G. Pfurtscheller, The self-paced Graz Brain-computer interface: Methods and applications. Comput Intell Neurosci, (2007).

    Google Scholar 

  48. G. Pfurtscheller, T. Solis-Escalante, R. Ortner, and P. Linortner, Self-Paced operation of an SSVEP-based orthosis with and without an imagery-based brain switch: A feasibility study towards a Hybrid BCI. IEEE Trans Neural Syst Rehabil Eng, 18(4), Feb., 409–414, (2010).

    Google Scholar 

  49. B.Z. Allison, C. Brunner, V. Kaiser, G.R. Müller-Putz, C. Neuper, and G. Pfurtscheller, Toward a hybrid brain–computer interface based on imagined movement and visual attention. J Neural Eng, 7, 026007, (2010).

    Article  CAS  Google Scholar 

  50. C. Brunner, B.Z. Allison, D.J. Krusienski, V. Kaiser, G.R. Müller-Putz, G. Pfurtscheller, and C. Neuper, Improved signal processing approaches in an offline simulation of a hybrid brain-computer interface. J Neurosci Methods, 188(1), 30 Apr., 165–173, (2010).

    Google Scholar 

  51. N. Birbaumer and L.G. Cohen, Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol, 579, Mar., 621–636, (2007).

    Article  CAS  PubMed  Google Scholar 

  52. E. Buch, C. Weber, L.G. Cohen, C. Braun, M.A. Dimyan, T. Ard, J. Mellinger, A. Caria, S. Soekadar, A. Fourkas, and N. Birbaumer, Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke, 39, Mar., 910–917, (2008).

    Article  PubMed  Google Scholar 

  53. J. Pineda, D. Brang, E. Hecht, L. Edwards, S. Carey, M. Bacon, C. Futagaki, D. Suk, J. Tom, C. Birnbaum, and A. Rork, Positive behavioral and electrophysiological changes following neurofeedback training in children with autism. Res Autism Spect Disord, 2, Jul., 557–581.

    Google Scholar 

  54. N. Birbaumer, C. Weber, C. Neuper, E. Buch, K. Haapen, and L. Cohen, Physiological regulation of thinking: brain-computer interface (BCI) research. Prog Brain Res, 159, 369–391, (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The contribution of the second author was supported in part by the Informa-tion and Communication Technologies Collaborative Project “BrainAble” within the Seventh Framework of the European Commission, Project number ICT-2010-247447.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Graimann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graimann, B., Allison, B., Pfurtscheller, G. (2009). Brain–Computer Interfaces: A Gentle Introduction. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds) Brain-Computer Interfaces. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02091-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02091-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02090-2

  • Online ISBN: 978-3-642-02091-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics