Skip to main content

Biopolymers

  • Chapter
  • First Online:

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 64))

Abstract

Biopolymers are intended to serve as substitutes for fuel-derived compounds. As their production in plants, driven by solar energy and photosynthesis, is CO2 neutral and they are normally completely biodegradable, they support a sustainable use of renewable resources. Unfortunately, in agriculturally usable cultivars, most biopolymers with technical applications are produced in low amounts, unfavourable combinations or are even absent. Hence, gene technology has to be used to create plants with an optimal concentration of, e.g. polysaccharides, poly-amino acids, or even polyhydroxyalkanoates. In order to reduce costs and the amount of farmland taken away from food production, the biopolymers should be a byproduct in plants already used for biomass, carbohydrate or fatty acid production. Several biopolymers are already produced in plants, sometimes in interesting amounts; nevertheless application is not in sight, due to necessary optimization and, even more, regulatory frameworks.

This is a preview of subscription content, log in via an institution.

References

  • Allen MM (1984) Cyanobacterial cell inclusions. Annu Rev Microbiol 38:1–25

    Article  PubMed  CAS  Google Scholar 

  • Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL (2003) Silk-based biomaterials. Biomaterials 24:401–416

    Article  PubMed  CAS  Google Scholar 

  • Amber IJ, Hibbs JB, Taintor RR, Vavrin Z (1988) The L-arginine dependent effector mechanism is induced in murine adenocarcinoma cells by culture supernatant from cytotoxic activated macrophages. J Leuk Biol 43:187–192

    CAS  Google Scholar 

  • Arai Y, Nakashita H, Suzuki Y, Kobayashi K, Shimizu T, Yasuda M, Doi Y, Yamaguchi I (2001) Plastid targeting of polyhydroxybutyrate biosynthetic pathway in tobacco. Plant Biotechnol 18:289–293

    Article  CAS  Google Scholar 

  • Barr LA, Fahnestock SR, Yang JJ (2004) Production and purification of recombinant DP1B silk-like protein in plants. Mol Breed 13:345–356

    Article  CAS  Google Scholar 

  • Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, Bartels D (1993) The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol Plant 87:223–226

    Article  CAS  Google Scholar 

  • Bohmert K, Balbo I, Steinbüchel A, Tischendorf G, Willmitzer L (2002) Constitutive expression of the beta-ketothiolase gene in transgenic plants. A major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant Physiol 128:1282–1290

    Article  PubMed  CAS  Google Scholar 

  • Caso G, McNurlan MA, McMillan ND, Eremin O, Garlick PJ (2004) Tumour cell growth in culture: dependence on arginine. Clin Sci 107:371–379

    Article  PubMed  CAS  Google Scholar 

  • Cen Y, Luo X, Liu X (1999) Effect of arginine on deep partial thickness burn in rats. Hua Xi Yi Ke Da Xue Xue Bao 30:198–201

    PubMed  CAS  Google Scholar 

  • Chang CJ, Swift G (1999) Poly(aspartic acid) hydrogel. J Macromol Sci Pure Appl Chem A36:963–970

    CAS  Google Scholar 

  • Da Costa MS, Santos H, Galinski EA (1998) An overview of the role and diversity of compatible solutes in bacteria and archae. Adv Biochem Eng Biotechnol 61:117–153

    PubMed  CAS  Google Scholar 

  • Davis JP, Supatcharee N, Khandelwal RL, Chibbar RN (2003) Synthesis of novel starches in planta: opportunities and challenges. Starch Starke 55:107–120

    Article  CAS  Google Scholar 

  • de Jonge WJ, Kwikkers KL, te Velde AA, van Deventer SJH, Nolte MA, Mebius RE, Ruijter JM, Lamers MC, Lamers WH (2002) Arginine deficiency affects early B cell maturation and lymphoid organ development in transgenic mice. J Clin Invest 110:1539–1548

    PubMed  Google Scholar 

  • EFSA (2005) Opinion of the scientific panel on genetically modified organisms on an application (reference EFSA-GMO-UK-2005-14) for the placing on the market of genetically modified potato EH92-527-1 with altered starch composition, for production of starch and food/feed uses, under regulation (EC) No 1829/2003 from BASF Plant Science. EFSA J 324:1–20

    Google Scholar 

  • Flynn NE, Meininger CJ, Haynes TE, Wu G (2002) Dossier: free amino acids in human health and pathologies -- the metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother 56:427–438

    Article  PubMed  CAS  Google Scholar 

  • Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) Modified lignin in tobacco and poplar plants over-expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22:223–234

    Article  PubMed  CAS  Google Scholar 

  • Gödl C, Sawangwan T, Nidetzky B, Müller M (2008) Method for producing 2-O-glycerol-alpha-D-glucopyranoside. Patent WO/2008/034158

    Google Scholar 

  • Hinman MB, Jones JA, Lewis RV (2000) Synthetic spider silk: a modular fiber. Trends Biotechnol 18:374–379

    Article  PubMed  CAS  Google Scholar 

  • Holland C, Terry AE, Porter D, Vollrath F (2007) Natural and unnatural silks. Polymer 48:3388–3392

    Article  CAS  Google Scholar 

  • Houmiel KL, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky TA, Reiser SE, Shah D, Taylor NB, Tran M, Valentin HE, Gruys KJ (1999) Poly(beta-hydroxybutyrate) production in oilseed leukoplasts of Brassica napus. Planta 209:547–550

    Article  PubMed  CAS  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Foo CWP, Kaplan DL (2007) Biosynthesis and applications of silk-like and collagen-like proteins. Polymer Rev 47:29–62

    Article  CAS  Google Scholar 

  • Hühns M, Neumann K, Hausmann T, Ziegler K, Klemke F, Kahmann U, Staiger D, Lockau W, Pistorius EK, Broer I (2008) Plastid targeting strategies for cyanophycin synthetase to achieve high-level polymer accumulation in Nicotiana tabacum. Plant Biotechnol J 6:321–336

    Article  PubMed  Google Scholar 

  • Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H-F5H-transformed poplars: Improved chemical savings and reduced environmental toxins. J Agric Food Chem 51:6178–6183

    Article  PubMed  CAS  Google Scholar 

  • Joentgen W, Groth TSA, Hai T, Oppermann FB (2001) Polyasparaginic acid homopolymers and copolymers, biotechnical production and use thereof. US Patent 61807572

    Google Scholar 

  • John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci USA 93:12768–12773

    Article  PubMed  CAS  Google Scholar 

  • Kaneda M, Kobayashi K, Nishida K, Katsuta S (1984) Glycerol glucosides in the Lilium genus. 3. Liliosides-D and liliosides-E 2 glycerol glucosides from Lilium japonicum. Phytochemistry 23:795–798

    Article  CAS  Google Scholar 

  • Klähn S, Marquardt DM, Rollwitz I, Hagemann M (2008) Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii resulted in improved salt tolerance of Arabidopsis thaliana. J Exp Bot 60:1679–1689

    Article  Google Scholar 

  • Kiick KL (2007) Biosynthetic methods for the production of advanced protein-based materials. Polym Rev 47:1–7

    Article  CAS  Google Scholar 

  • Krehenbrink M, Oppermann-Sanio FB, Steinbuchel A (2002) Evaluation of non-cyanobacterial genome sequences for occurrence of genes encoding proteins homologous to cyanophycin synthetase and cloning of an active cyanophycin synthetase from Acinetobacter sp strain DSM 587. Arch Microbiol 177:371–380

    Article  PubMed  CAS  Google Scholar 

  • Kull B, Salamini F, Rhode W (1995) genetic engineering of potato starch composition. Inhibition of amylose biosynthesis in tubers from transgenic potato lines by the expression of antisense sequences of the gene for granule-bound-starch synthase. J Genet Breed 49:69–76

    CAS  Google Scholar 

  • Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, Welsh EA, Soares JW, Karatzas CN (2002) Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295:472–476

    Article  PubMed  CAS  Google Scholar 

  • Lenis NP, van Diepen HTM, Bikker P, Jongbloed AG, van der Meulen J (1999) Effect of the ratio between essential and nonessential amino acids in the diet on utilization of nitrogen and amino acids by growing pigs. J Anim Sci 77:1777–1787

    PubMed  CAS  Google Scholar 

  • Li G, Quiros CF (2003) In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK. Theor Appl Genet 106:1116–1121

    PubMed  CAS  Google Scholar 

  • Li P, Yin YL, Li D, Kim SW, Wu GY (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  PubMed  CAS  Google Scholar 

  • Lössl A, Eibl C, Harloff HJ, Jung C, Koop HU (2003) Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. Plant Cell Rep 21:891–899

    PubMed  Google Scholar 

  • Menassa R, Hong Z, Karatzas CN, Lazaris A, Richman A, Brandle J (2004) Spider dragline silk proteins in transgenic tobacco leaves: accumulation and field production. Plant Biotechnol J 2:431–438

    Article  PubMed  CAS  Google Scholar 

  • Nagapudi K, Brinkman WT, Leisen J, Thomas BS, Wright ER, Haller C, Wu XY, Apkarian RP, Conticello VP, Chaikof EL (2005) Protein-based thermoplastic elastomers. Macromolecules 38:345–354

    Article  CAS  Google Scholar 

  • Nakashita H, Arai Y, Yoshioka K, Fukui T, Doi Y, Usami R, Horikoshi K, Yamaguchi I (1999) Production of biodegradable polyester by a transgenic tobacco. Biosci Biotechnol Biochem 63:870–874

    Article  CAS  Google Scholar 

  • Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic-pathway to the plastids of Arabidopsis thaliana results in high-levels of polymer accumulation. Proc Natl Acad Sci USA 91:12760–12764

    Article  PubMed  CAS  Google Scholar 

  • Neumann K, Stephan DP, Ziegler K, Hühns M, Broer I, Lockau W, Pistorius EK (2005) Production of cyanophycin, a suitable source for the biodegradable polymer polyaspartate, in transgenic plants. Plant Biotechnol J 3:249–258

    Article  PubMed  CAS  Google Scholar 

  • Nieves C Jr, Langkamp-Henken B (2002) Arginine and immunity: a unique perspective. Biomed Pharmacother 56:471–482

    Article  PubMed  CAS  Google Scholar 

  • Noda I, Green PR, Satkowski MM, Schechtman LA (2005) Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromolecules 6:580–586

    Article  PubMed  CAS  Google Scholar 

  • Oppermann-Sanio FB, Steinbüchel A (2002) Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften 89:11–22

    Article  PubMed  Google Scholar 

  • Oppermann-Sanio FB, Hai T, Aboulmagd E, Hezayen FF, Jossek S, Steinbüchel A (1999) Biochemistry of polyamide metabolism. In: Steinbüchel, A (ed) Biochemical principles and mechanisms of biosynthesis and biodegradation of polymers. Proceedings of the international symposium. Wiley-VCH, Weinheim, pp 185–193

    Google Scholar 

  • Perez-Rigueiro J, Elices M, Guinea GV (2003) Controlled supercontraction tailors the tensile behaviour of spider silk. Polymer 44:3733–3736

    Article  CAS  Google Scholar 

  • Pickardt T, de Kathen A (2004) Gentechnisch veränderte Pflanzen mit neuen oder verbesserten Qualitäts-und Nutzungseigenschaften: Futtermittel- und rohstoffliefernde Nutzpflanzen, Pflanzen zur Bodensanierung und Zierpflanzen. Auftrag des Büros für Technikfolgenabschätzung De Kathen &Pickardt BiotechConsult GbR, Berlin

    Google Scholar 

  • Poirier Y (2002) Polyhydroxyalknoate synthesis in plants as a tool for biotechnology and basic studies of lipid metabolism. Prog Lipid Res 41:131–155

    Article  PubMed  CAS  Google Scholar 

  • Popovic PJ, Zeh HJ, Ochoa JB (2007) Arginine and immunity. J Nutr 137:1681S–1686S

    PubMed  CAS  Google Scholar 

  • Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–523

    Article  PubMed  CAS  Google Scholar 

  • Qaim M (2006) The role of plant breeding for global food security. Ber Landwirtsch 84:198–212

    Google Scholar 

  • Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP, Vollrath F, Engstrom W (2005) Spider silk proteins -- mechanical property and gene sequence. Zool Sci 22:273–281

    Article  PubMed  CAS  Google Scholar 

  • Roder A, Hoffmann E, Hagemann M, Berg G (2005) Synthesis of the compatible solutes glucosylglycerol and trehalose by salt-stressed cells of Stenotrophomonas strains. FEMS Microbiol Lett 243:219–226

    Article  PubMed  CAS  Google Scholar 

  • Romano A, van der Plas LHW, Witholt B, Eggink G, Mooibroek H (2005) Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta 220:455–464

    Article  PubMed  CAS  Google Scholar 

  • Roth FX, Fickler J, Kirchgessner M (1995) Effect of dietary arginine and glutamic acid supply on the N-balance of piglets. 5. Communication on the importance of nonessential amino acids for protein retention. Z Tierphysiol Tierernahr Futtermittelk 73:202–212

    CAS  Google Scholar 

  • Sanford K, Kumar M (2005) New proteins in a materials world. Curr Opin Biotechnol 16:416–421

    Article  PubMed  CAS  Google Scholar 

  • Saruul P, Srienc F, Somers DA, Samac DA (2002) Production of a biodegradable plastic polymer, poly-beta-hydroxybutyrate, in transgenic alfalfa. Crop Sci 42:919–927

    Article  CAS  Google Scholar 

  • Sauter A, Hüsung B (2005) TA-Projekt Grüne Gentechnik -- transgene Pflanzen der 2. und 3. Generation. Büro für Technikfolgenabschätzung beim deutschen Bundestag, Berlin Arbeitsbericht 104

    Google Scholar 

  • Scheibel T (2005) Protein fibers as performance proteins: new technologies and applications. Curr Opin Biotechnol 16:427–433

    Article  PubMed  CAS  Google Scholar 

  • Scheller J, Conrad U (2005) Plant-based material, protein and biodegradable plastic. Curr Opin Plant Biol 8:188–196

    Article  PubMed  CAS  Google Scholar 

  • Scheller J, Guhrs KH, Grosse F, Conrad U (2001) Production of spider silk proteins in tobacco and potato. Nat Biotechnol 19:573–577

    Article  PubMed  CAS  Google Scholar 

  • Scheller J, Henggeler D, Viviani A, Conrad U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13:51–57

    Article  PubMed  CAS  Google Scholar 

  • Schwamborn M (1996) Polyasparaginsäuren. Nachr Chem Technol Lab 44:1167–1179

    Article  CAS  Google Scholar 

  • Schwamborn M (1998) Chemical synthesis of polyaspartates: a biodegradable alternative to currently used polycarboxylate homo- and copolymers. Polymer Degrad Stab 59:39–45

    Article  CAS  Google Scholar 

  • Shao ZZ, Vollrath F (2002) Materials: surprising strength of silkworm silk. Nature 418:741

    Article  PubMed  CAS  Google Scholar 

  • Simon RD (1976) Biosynthesis of multi-L-arginyl-poly(L-aspartic acid) in filamentous cyanobacterium Anabaena cylindrica. Biochim Biophys Acta 422:407–418

    Article  PubMed  CAS  Google Scholar 

  • Simon RD (1987) Inclusion bodies in the cyanobacteria: cyanophycin, polyphosphate, polyhedral bodies. In: Fay P, van Baalen C (eds) The cyanobacteria, Elsevier, Amsterdam, pp 199–225

    Google Scholar 

  • Simon RD, Weathers P (1976) Determination of structure of novel polypeptide containing aspartic acid and arginine which is found in Cyanobacteria. Biochim Biophys Acta 420:165–176

    Article  PubMed  CAS  Google Scholar 

  • Slater S, Mitsky TA, Houmiel KL, Hao M, Reiser SE, Taylor NB, Tran M, Valentin HE, Rodriguez DJ, Stone DA, Padgette SR, Kishore G, Gruys KJ (1999) Metabolic engineering of Arabidopsis and Brassica for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer production. Nat Biotechnol 17:1011–1016

    Article  PubMed  CAS  Google Scholar 

  • Tabata K, Abe H, Doi Y (2000) Microbial degradation of poly(aspartic acid) by two isolated strains of Pedobacter sp. and Sphingomonas sp. Biomacromolecules 1:157–161

    Article  PubMed  CAS  Google Scholar 

  • Taheri F, Ochoa JB, Faghiri Z, Culotta K, Park HJ, Lan MS, Zea AH, Ochoa AC (2001) L-arginine regulates the expression of the T-cell receptor zeta chain (CD3 zeta) in Jurkat cells. Clin Cancer Res 7:958S–965S

    PubMed  CAS  Google Scholar 

  • Tapiero H, Mathe G, Couvreur P, Tew KD (2002) I. Arginine. Biomed Pharmacother 56:439–445

    Google Scholar 

  • Thrän D, Weber M, Scheuermann A, Fröhlich N, Zeddies J, Henze A, Thoroe C, Schweinle J, Fritsche UR, Jenseit W, Rausch L, Schmidt K (2005) Sustainable strategies for biomass use in the european context. Analysis in the charged debate on national guidelines and the competition between sloid, liquid and gaseous biofuels. Institute for Energy and Environment GmbH, Leipzig

    Google Scholar 

  • Tirrell DA (1996) Putting a new spin on spider silk. Science 271:39–40

    Article  PubMed  CAS  Google Scholar 

  • Valentin HE, Broyles DL, Casagrande LA, Colburn SM, Creely WL, DeLaquil PA, Felton HM, Gonzalez KA, Houmiel KL, Lutke K, Mahadeo DA, Mitsky TA, Padgette SR, Reiser SE, Slater S, Stark DM, Stock RT, Stone DA, Taylor NB, Thorne GM, Tran M, Gruys KJ (1999) PHA production, from bacteria to plants. Int J Biol Macromol 25:303–306

    Article  PubMed  CAS  Google Scholar 

  • van Beilen JB, Poirier Y (2008) Production of renewable polymers from crop plants. Plant J 54:684–701

    Article  PubMed  Google Scholar 

  • Vollrath F (2000) Strength and structure of spiders' silks. J Biotechnol 74:67–83

    PubMed  CAS  Google Scholar 

  • Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548

    Article  PubMed  CAS  Google Scholar 

  • Wu GY, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin YL (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livestock Sci 112:8–22

    Article  Google Scholar 

  • Yang JJ, Barr LA, Fahnestock SR, Liu ZB (2005) High yield recombinant silk-like protein production in transgenic plants through protein targeting. Transgenic Res 14:313–324

    Article  PubMed  CAS  Google Scholar 

  • Yeramian A, Martin L, Arpa L, Bertran J, Soler C, McLeod C, Modolell M, Palacin M, Lloberas J, Celada A (2006) Macrophages require distinct arginine catabolism and transport systems for proliferation and for activation. Eur J Immunol 36:1516–1526

    Article  PubMed  CAS  Google Scholar 

  • Ziegler K, Deutzmann R, Lockau W (2002) Cyanophycin synthetase-like enzymes of non-cyanobacterial eubacteria: characterization of the polymer produced by a recombinant synthetase of Desulfitobacterium hafniense. Z Naturforsch C 57:522–529

    PubMed  CAS  Google Scholar 

  • Zotz RJ, Schenk S, Kuhn A, Schlunken S, Krone V, Bruns W, Genth S, Schuler G (2001) Safety and efficacy of LK565 -- a new polymer ultrasound contrast agent. Z Kardiol 90:419–426

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Hühns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hühns, M., Broer, I. (2010). Biopolymers. In: Kempken, F., Jung, C. (eds) Genetic Modification of Plants. Biotechnology in Agriculture and Forestry, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02391-0_13

Download citation

Publish with us

Policies and ethics