Skip to main content

Engineered Male Sterility

  • Chapter
  • First Online:
Genetic Modification of Plants

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 64))

Abstract

The agricultural exploitation of hybrid crop varieties has enabled enormous increases in food productivity through increased uniformity and hybrid vigour. Because of hybrid vigour, or heterosis , these crops are characterized by an increased resistance to disease and enhanced performance in different environments when comparing the heterozygous hybrid progeny (called F1 hybrids) to the homozygous parents. The generation of male sterility, mainly nucleus -encoded, is the basis of new, reliable, and cost-effective pollination control systems for genetic engineering that have been developed during the past decade. The propagation of male-sterile female parent lines is an important aspect for the successful application of these systems in large-scale hybrid seed production. This article describes the development and use of transgenic engineered plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akagi H, et al (2004) Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet 108:1449–1457

    Article  PubMed  CAS  Google Scholar 

  • Basra AS (ed) (2000) Hybrid seed production in vegetables: rationale and methods in selected crops. Food Products, Binghamton, N.Y.

    Google Scholar 

  • Bino RJ (1985) Histological aspects of microsporogenesis in fertile, cytoplasmic male-sterile and restored fertile Petunia hybrida. Theor Appl Genet 69:423–428

    Article  Google Scholar 

  • Brown GG, et al (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  PubMed  CAS  Google Scholar 

  • Burgess DG, et al (2002) A novel, two-component system for cell lethality and its use in engineering nuclear male-sterility in plants. Plant J 31:113–125

    Article  PubMed  CAS  Google Scholar 

  • Chase CD (2006) Genetically engineered cytoplasmic male sterility. Trends Plant Science 11:7–9

    Article  CAS  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial--nuclear interactions. Trends Genet 23:81–90

    Article  PubMed  CAS  Google Scholar 

  • Cigan AM, Albertsen MC (2000) Reversible nuclear genetic system for male sterility in transgenic plants. US Patent 6072102

    Google Scholar 

  • Denis M, Delourme R, Gourret JP, Mariani C, Renard M (1993) Expression of engineered nuclear male sterility in Brassica napus. Plant Physiol 101:1295–1304

    PubMed  CAS  Google Scholar 

  • Desloire S, et al (2003) Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep. 4:588–594

    Article  PubMed  CAS  Google Scholar 

  • Dong NV, et al (2000) Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques. Theor Appl Genet 100:727–734

    Article  CAS  Google Scholar 

  • Dotson SB, Lanahan MB, Smith AG, Kishore GM (1996) A phosphonate monoester hydrolase from Burkholderia caryophilli PG2982 is useful as a conditional lethal gene in plant. Plant J 10:383–392

    Article  PubMed  CAS  Google Scholar 

  • Glover J, Grelon M, Craig S, Chaudury A, Dennis L (1998) Cloning and characterisation of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J 15:345–356

    Article  PubMed  CAS  Google Scholar 

  • Goetz M, Godt DE, Guivarch A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA 98:6522–6527

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Crossland LD, Privalle LS (1999) Control of gene expression in plants by receptor mediated transactivation in the presence of a chemical ligand. US Patent 5880333

    Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    PubMed  CAS  Google Scholar 

  • Gómez-Casati DF, Busi MV, Gonzalez-Schain N, Mouras A, Zabaleta EJ, Araya A (2002) A mitochondrial dysfunction induces the expression of nuclear-encoded complex I genes in engineered male sterile Arabidopsis thaliana. FEBS Lett 532:70–74

    Article  PubMed  Google Scholar 

  • Hanson MR, Conde MF (1985) Function and variation of cytoplasmic genomes: lessons from cytoplasmic-nuclear interactions affecting male sterility in plants. Int Rev Cytol 94:213–267

    Article  CAS  Google Scholar 

  • He S, Abad AR, Gelvin SB, Mackenzie S (1996) A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco. Proc Natl Acad Sci USA 93:11763–11768

    Article  PubMed  CAS  Google Scholar 

  • He YQ, Yang J, Xu CG, Zhang ZG, Zhang Q (1999) Genetic bases of instability of male sterility and fertility reversibility in photoperiod-sensitive genic male-sterile rice. Theor Appl Genet 99:683–693

    Article  PubMed  CAS  Google Scholar 

  • Hernould M, Suharsonno S, Litvak S, Araya A, Mouras A (1993a) Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90:2370–2374

    Article  PubMed  CAS  Google Scholar 

  • Hernould M, Suharsono S, Litvak S, Araya A, Mouras A (1993b) Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90:2370–2374

    Article  PubMed  CAS  Google Scholar 

  • Hernould M, et al (1998) Impairment of tapetum and mitochondria in engineered male-sterile tobacco plants. Plant Mol Biol 36:499–508

    Article  PubMed  CAS  Google Scholar 

  • Höfig KP, Möller R, Donaldson L, Putterill J, Walter C (2006) Towards male sterility in Pinus radiata -- a stilbene synthase approach to genetically engineer nuclear male sterility. Plant Biotechnol J 4:333–343

    Article  PubMed  Google Scholar 

  • Huang S, et al (2003) Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol 131:1270–1282

    Article  PubMed  CAS  Google Scholar 

  • Jan CC, Rutger JN (1988) Mitomycin C- and streptomycin-induced male sterility in cultivated sunflower. Crop Sci 28:792–795

    Article  CAS  Google Scholar 

  • Kadowaki K, Osumi T, Nemoto H, Harada K, Shinjyo C (1988) Mitochondrial DNA polymorphism in male-sterile cytoplasm of rice. Theor Appl Genet 75:234–236

    Article  CAS  Google Scholar 

  • Kazama T, Toriyama K (2003) A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett 544:99–102

    Article  PubMed  CAS  Google Scholar 

  • Kempken F, Pring DR (1999) Male sterility in higher plants -- fundamentals and applications. Prog Bot 60:139–166

    Article  CAS  Google Scholar 

  • Khan MS (2005) Engineered male sterility. Nature 436:783–785

    Article  PubMed  CAS  Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224

    PubMed  CAS  Google Scholar 

  • Kriete G, Niehaus K, Perlick AM, Pühler A, Broer I (1996) Male sterility in transgenic tobacco plants induced by tapetum-specific deacetylation of the externally applied non-toxic compound N-acetyl-L-phosphinothricin. Plant J 9:809–818

    Article  PubMed  CAS  Google Scholar 

  • Laughnan JR, Gabay-Laughnan S (1983) Cytoplasmic male sterility in maize. Annu Rev Genet 17:27–48

    Article  PubMed  CAS  Google Scholar 

  • Lefort-Buson M, Guillot-Lemoine B, Datté Y (1987) Heterosis and genetic distance in rapeseed (Brassica napus L): crosses between European and Asiatic selfed lines. Genome 29:413–418

    Article  Google Scholar 

  • Levings CS III (1990) The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility. Science 250:942–947

    Article  PubMed  CAS  Google Scholar 

  • Linke B, Börner T (2005) Mitochondrial effects on flower and pollen development. Mitochondrion 5/6:389–402

    Article  PubMed  CAS  Google Scholar 

  • Luo H, Lyznik LA, Gidoni D, Hodges TK (2000) FLP-mediated recombination for use in hybrid plant production. Plant J 23:423–430

    Article  PubMed  CAS  Google Scholar 

  • Ma B, et al (2006) Subcellular localization and membrane topology of the melon ethylene receptor CmERS1. Plant Physiol 141:587–597

    Article  PubMed  CAS  Google Scholar 

  • Mariani C, de Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741

    Article  CAS  Google Scholar 

  • Mariani C, et al (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357:384–387

    Article  CAS  Google Scholar 

  • McConn M, Browse J (1996) The critical requirement for linoleic acid in pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416

    PubMed  CAS  Google Scholar 

  • Paddon CJ, Vasantha N, Hartley RW (1989) Translation and processing of Bacillus amyloliquefaciens extracellular RNase. J Bacteriol 171:1185–1187

    PubMed  CAS  Google Scholar 

  • Pelletier G, Budar F (2007) The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering. Curr Opin Biotechnol 18:121–125

    Article  PubMed  CAS  Google Scholar 

  • Perez-Prat E, van Lookeren Campagne MM (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci 7:199–203

    Article  PubMed  CAS  Google Scholar 

  • Pring DR, Tang HV, Schertz KF (1995) Cytoplasmic male sterility and organelle DNAs of sorghum. In: Levings CS III, Vasil IK (eds) The molecular biology of plant mitochondria. Kluwer, Dordrecht, pp 461–495

    Google Scholar 

  • Ray K, Bisht NC, Pental D, Bumar PK (2007) Development of barnase/barstar transgenics for hybrid seed production in Indian oilseed mustard (Brassica juncea L. Czern & Coss) using a mutant acetolactate synthase gene conferring resistance to imidazolinone-based herbicide ‘Pursuit’. Curr Sci 93:1390–1396

    CAS  Google Scholar 

  • Ribarits A, et al (2007) Combination of reversible male sterility and doubled haploid production by targeted inactivation of cytoplasmic glutamine synthetase in developing anthers and pollen. Plant Biotechnol J 5:483–494

    Article  PubMed  CAS  Google Scholar 

  • Roque E, et al (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by anther ablation. Plant Cell Rep 26:313–325

    Article  PubMed  CAS  Google Scholar 

  • Ruiz ON, Daniell H (2005) Engineering cytoplasmic male sterility via the chloroplast genome by expression of ß-ketothiolase. Plant Physiol 138:1232–1246

    Article  PubMed  CAS  Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3:175–180

    Article  Google Scholar 

  • Small ID, Peeters N (2000) The PPR motif -- a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25:46–47

    Article  PubMed  CAS  Google Scholar 

  • Stockmeyer K, Kempken F (2006) Engineered male sterility in plant hybrid breeding. Prog Bot 67:178–185

    Article  CAS  Google Scholar 

  • Stockmeyer K, Pring DR, Kempken F (2007) Heterologous expression of the cytoplasmic male sterility-associated orf107 from Sorghum bicolor in Arabidopsis thaliana. Endocytobiosis Cell Res 18:11–23

    Google Scholar 

  • Sun ZX, Min SK, Xiong ZM (1989) A temperature-sensitive male sterile line found in rice. Rice Genet Newslett 6:116–117

    Google Scholar 

  • Takada K, Kamada H, Ezura H (2005) Production of male sterile transgenic plants. Plant Biotechnol 22:469–476

    Article  CAS  Google Scholar 

  • Takada K, Ishimaru K, Kamada H, Ezura H (2006) Anther-specific expression of mutated melon ethylene receptor gene Cm-ERS1/H70A affected tapetum degeneration and pollen grain production in transgenic tobacco plants. Plant Cell Rep 25:936–941

    Article  PubMed  CAS  Google Scholar 

  • Takada K, Watanabe S, Sano T, Ma B, Kamada H, Ezura H (2007) Heterologous expression of the mutated melon ethylene receptor gene Cm-ERS1/H70A produces stable sterility in transgenic lettuce (Lactuca sativa). J Plant Physiol 164:514–520

    Article  PubMed  CAS  Google Scholar 

  • van de Meer IM, Stam ME, van Tunen AJ, Mol JNM, Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4:253–262

    PubMed  Google Scholar 

  • Wang Z, et al (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18:676–687

    Article  PubMed  CAS  Google Scholar 

  • Wise RP, Fliss AE Jr, Pring DR, Gengenbach BG (1987) urf13-T of T cytoplasm maize mitochondria encodes a 13,000 kD polypeptide. Plant Mol Biol 9:121–126

    Article  CAS  Google Scholar 

  • Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4:759–771

    PubMed  CAS  Google Scholar 

  • Xu GW, Cui YX, Schertz KF, Hart GE (1995a) Isolation of mitochondrial DNA sequences that distinguish male-sterility-inducing cytoplasms in Sorghum bicolor (L.) Moench. Theor Appl Genet 90:1180–1187

    Article  CAS  Google Scholar 

  • Xu H, Knox RB, Taylor PE, Singh MB (1995b) Bcp1, a gene required for male fertility in Arabidopsis. Proc Natl Acad Sci USA 92:2106–2110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The laboratory work of the author is funded by the German Research Council (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kempken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kempken, F. (2010). Engineered Male Sterility. In: Kempken, F., Jung, C. (eds) Genetic Modification of Plants. Biotechnology in Agriculture and Forestry, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02391-0_14

Download citation

Publish with us

Policies and ethics